VideoGPT:Video Generation using VQ-VAE and Transformers

2024-04-11 06:36

本文主要是介绍VideoGPT:Video Generation using VQ-VAE and Transformers,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.introduction

对于视频展示,选择哪种模型比较好?基于似然->transformers自回归。在没有空间和时间溶于的降维潜在空间中进行自回归建模是否优于在所有空间和时间像素级别上的建模?选择前者:自然图像和视频包括了大量的空间和时间冗余,这些冗余可以通过学习高分辨率输入的去噪降维编码来消除,例如,空间和时间维度上的4倍降采样会导致64倍的分辨率降低,在潜在空间建模,不是像素空间,可以提高采样速度和计算需求。VideoGPT是基于VQVAE和GPT的视频生成架构,

VideoGPT利用3D conv和transposed conv along with axial attention,在VQVAE中的编码器中学习从视频帧原始像素中获取降维离散潜在值,利用GPT进行自回归。

2.VideoGPT

2.1 learning latent code

第一阶段:为了学习一组离散的潜在code,首先在视频数据上训练一个VQVAE,编码器结构包括一系列在时空维度上进行下采样的3D卷积,如图所示,

2.2 learning a prior

第二阶段:Image-GPT,学习第一阶段VQVAE潜在code的先验。

3.Experiments

3.1 Training details

所有的图像数据在训练前被缩放在-0.5-0.5之间,训练64x64的视频,长度是16.

这篇关于VideoGPT:Video Generation using VQ-VAE and Transformers的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893332

相关文章

Apple quietly slips WebRTC audio, video into Safari's WebKit spec

转自:http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-into-safaris-webkit-spec/?from=timeline&isappinstalled=0 http://www.zdnet.com/article/apple-quietly-slips-webrtc-audio-video-

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

LLVM入门2:如何基于自己的代码生成IR-LLVM IR code generation实例介绍

概述 本节将通过一个简单的例子来介绍如何生成llvm IR,以Kaleidoscope IR中的例子为例,我们基于LLVM接口构建一个简单的编译器,实现简单的语句解析并转化为LLVM IR,生成对应的LLVM IR部分,代码如下,文件名为toy.cpp,先给出代码,后面会详细介绍每一步分代码: #include "llvm/ADT/APFloat.h"#include "llvm/ADT/S

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

Python安装llama库出错“metadata-generation-failed”

Python安装llama库出错“metadata-generation-failed” 1. 安装llama库时出错2. 定位问题1. 去官网下载llama包 2.修改配置文件2.1 解压文件2.2 修改配置文件 3. 本地安装文件 1. 安装llama库时出错 2. 定位问题 根据查到的资料,发现时llama包中的execfile函数已经被下线了,需要我们手动修改代码后

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探

HumanNeRF:Free-viewpoint Rendering of Moving People from Monocular Video 翻译

HumanNeRF:单目视频中运动人物的自由视点绘制 引言。我们介绍了一种自由视点渲染方法- HumanNeRF -它适用于一个给定的单眼视频ofa人类执行复杂的身体运动,例如,从YouTube的视频。我们的方法可以在任何帧暂停视频,并从任意新的摄像机视点或甚至针对该特定帧和身体姿势的完整360度摄像机路径渲染主体。这项任务特别具有挑战性,因为它需要合成身体的照片级真实感细节,如从输入视频中可能

基于VAE和流模型的AIGC技术

哇哦,VAE(变分自编码器)和流模型在AI生成内容(AIGC)领域可真是大放异彩呢!🚀🌟 它们就像魔法师一样,能够创造出各种各样、高质量的数据,从图像到音频,再到文本,简直无所不能!🎨🎶📚 来,让我们用更轻松活泼的方式,探索一下VAE和流模型的奇妙世界吧! 🌈 VAE:数据表示的魔法师 🌈 设计哲学:VAE的目标是学习输入数据的有效表示,这样它就能像变魔术一样重构输入数据。和标

Learning Temporal Regularity in Video Sequences——视频序列的时间规则性学习

Learning Temporal Regularity in Video Sequences CVPR2016 无监督视频异常事件检测早期工作 摘要 由于对“有意义”的定义不明确以及场景混乱,因此在较长的视频序列中感知有意义的活动是一个具有挑战性的问题。我们通过在非常有限的监督下使用多种来源学习常规运动模式的生成模型(称为规律性)来解决此问题。体来说,我们提出了两种基于自动编码器的方法,以

Show,Attend and Tell: Neural Image Caption Generation with Visual Attention

简单的翻译阅读了一下 Abstract 受机器翻译和对象检测领域最新工作的启发,我们引入了一种基于注意力的模型,该模型可以自动学习描述图像的内容。我们描述了如何使用标准的反向传播技术,以确定性的方式训练模型,并通过最大化变分下界随机地训练模型。我们还通过可视化展示了模型如何能够自动学习将注视固定在显着对象上,同时在输出序列中生成相应的单词。我们通过三个基准数据集(Flickr9k,Flickr