本文主要是介绍【优化求解】基于matlab改进的遗传算法求解考虑环境效益DG优化问题【含Matlab源码 1483期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)
⛄一、遗传算法简介
1 引言
2 遗传算法理论
2.1 遗传算法的生物学基础
2.2 遗传算法的理论基础
2.3 遗传算法的基本概念
2.4 标准的遗传算法
2.5 遗传算法的特点
2.6 遗传算法的改进方向
3 遗传算法流程
4 关键参数说明
⛄二、部分源代码
function[]=main(N_gen,pcro,pmut)
clear;clc;
%遗传算法主函数
%用以实现求给定函数fun在给定区间[low,up]上的极大值
%pcro交叉概率,pmut变异概率,N_gen迭代次数
%改进地方:交叉率和变异率采用自适应,最优点采用最小值,判断是否越限改在交叉变异后,原来是在变异程序里
pcro1=0.9;
pcro2=0.6;
pmut1=0.1;
pmut2=0.05;
N_gen=150;
n=100; %种群个数
line=[1 1 2 0.0922 0.047 ;
2 2 3 0.0493 0.2511 ;
3 3 4 0.366 0.1864 ;
4 4 5 0.3811 0.1941 ;
5 5 6 0.8190 0.707 ;
6 6 7 0.1872 0.6188;
7 7 8 0.7114 0.2351 ;
8 8 9 1.03 0.74 ;
9 9 10 1.044 0.74;
10 10 11 0.1966 0.065 ;
11 11 12 0.3744 0.1238;
12 12 13 1.468 1.155 ;
13 13 14 0.5416 0.7129;
14 14 15 0.5910 0.526 ;
15 15 16 0.7463 0.5450 ;
16 16 17 1.289 1.7210 ;
17 17 18 0.7320 0.574;
18 2 19 0.164 0.1565 ;
19 19 20 1.5042 1.3554;
20 20 21 0.4095 0.4784;
21 21 22 0.7089 0.9373 ;
22 3 23 0.4512 0.3083 ;
23 23 24 0.8980 0.7091 ;
24 24 25 0.8960 0.7011 ;
25 6 26 0.2030 0.1034 ;
26 26 27 0.2842 0.1447 ;
27 27 28 1.059 0.9337;
28 28 29 0.8042 0.7006;
29 29 30 0.5075 0.2585 ;
30 30 31 0.9744 0.9630;
31 31 32 0.3105 0.3619 ;
32 32 33 0.3410 0.5362 ];
%line1为支路负荷
line1=[1 0 0;
2 100 60;
3 90 40;
4 120 80;
5 60 30;
6 60 20;
7 200 100;
8 200 100;
9 60 20;
10 60 20;
11 45 30;
12 60 35;
13 60 35;
14 120 80;
15 60 10;
16 60 20;
17 60 20;
18 90 40;
19 90 40;
20 90 40;
21 90 40;
22 90 40;
23 90 50;
24 420 200;
25 420 200;
26 60 25;
27 60 25;
28 60 20;
29 120 70;
30 200 600;
31 150 70;
32 210 100;
33 60 40];
LOAD=3715;%总有功负荷/KW
pmax=0.2*LOAD/0.9; % #功率因数0.9, 分布式电源接入总容量不超过系统总负荷20%# 825.5556KW
%%%ieee33 #功率基准值=10MVA,线电压基准值=12.66KV,总有功负荷=3715KW,总无功负荷=2300Kvar,根节点电压标幺值=1#
n_point=size(line1,1) ; %节点数
pop=encode(n_point,n,pmax); %用编码函数求得初始种群
gen=0;%代数初始化
j=1;
while(gen<=N_gen)
time(j)=j;
fval=zeros(1,n);%初始化函数值
fit=zeros(1,n);%初始化适应度
for i=1:n
fval(i)=fun(pop(i,:),line,line1,LOAD); %求个体的函数值,目标函数
end
fval_avg(time(j))=mean(fval);%记录每代个体函数值平均值
%fval=fval-min(fval);%保证适应度为正值
fsum=sum(fval);%总适应度
fit_avg=fsum/n;%计算种群适应度平均值
fit=fval/fsum;%求个体的适应度(归一化)
[fit1,index]=sort(fit); %将fit数组从小到大排序,并存在数组fit1中;同时,将对应的数组下标值存在数组index中
best=pop(index(1)😅;%记录每代的最优值,保留在变量best中 #因为从小到大排列完,n=100时是最优个体#
% best_fit(1,gen+1)=fit1(index(n));
% best_fit(1,gen+1)=fval(index(1));
best_fit(1,gen+1)= fun(pop(index(1)😅,line,line1,LOAD);
% avg_fit(1,gen+1)=fit_avg;
fval_best(time(j))=fun(best,line,line1,LOAD); %求出每代最优个体的函数值,保存在数组 fval_best中
q(1)=fit(1);
for i=2:n
q(i)=q(i-1)+fit(i);%累加个体适应度形成赌轮
end
function popnew=crossover(pop,pcro1,pcro2,n,length,pmax,fit1,fit_avg)
%pcro为交叉概率
% %单切点交叉
% k=1; %k个体编号
% i=0;
% while(k<=n)
% rk=rand(); %选取进行交叉的两个亲本
% if rk<pcro
% b(i+1)=k;
% i=i+1;
% end
% k=k+1;
% if i==2
% pos=fix(rand()2length)+1;%随机产生交叉点
% for i=pos:2*length
% c=pop(b(1),i);
% pop(b(1),i)=pop(b(2),i);%对交叉点之后的编码进行交换
% pop(b(2),i)=c;
% end
% i=0;
% end
% end
%双切点交叉函数(改进)
k1=1;
for k=1:2:n
%自适应
if fit1(k+1)>=fit_avg
pcro=proc1(1/(proc1-proc2+exp((fit1(k+1)-fit_avg)/(fit1(n)-fit_avg))));
else
pcro=k1pcro1;
end
%**********************************
rk=rand();
if rk<pcro
pos1=ceil(lengthrand); %随机产生交叉点1
if pos1==1 %出口断路器位置不允许变化
pos1=pos1+1;
end
pos2=ceil(lengthrand); %随机产生交叉点2
if pos2==1 %出口断路器位置不允许变化
pos2=pos2+1;
end
if pos1>pos2 %两个交叉点按从小到大排序
temp=pos1;
pos1=pos2;
pos2=temp;
end
for i=pos1:pos2 %对交叉点pos1到pos2的编码进行交换
c=pop(k,i);
pop(k,i)=pop(k+1,i);
pop(k+1,i)=c;
end
for i=(pos2+1):length %对交叉点pos2之后的编码进行交换
c=pop(k,i);
pop(k,i)=pop(k+1,i);
pop(k+1,i)=c;
end
end
end
popnew=floor(pop);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
《智能优化算法及其MATLAB实例(第2版)》包子阳 余继周 杨杉著 电子工业出版社
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
这篇关于【优化求解】基于matlab改进的遗传算法求解考虑环境效益DG优化问题【含Matlab源码 1483期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!