【图像隐写】基于matlab FRFT+SVD盲水印嵌入+攻击+提取【含Matlab源码 1757期】

2024-04-11 04:32

本文主要是介绍【图像隐写】基于matlab FRFT+SVD盲水印嵌入+攻击+提取【含Matlab源码 1757期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、基于分数阶傅立叶变换的水印算法简介

1 分数阶傅立叶变换
FRFT可以解释为信号在时频平面内坐标轴绕原点逆时针旋转任意角度后构成的分数阶Fourier域上的表示方法, 它的基本定义是从线性积分变换的角度给出的。定义在t域的函数x (t) 的p阶分数阶傅立叶变换如下:
Xp (u) ≡∫∞−∞x (t) Kp (t, u) dt (1)
式中FRFT的变换核Kp (t, u) 如下:
在这里插入图片描述
其中α≡pπ2。记阶数为P的FRFT线性算子为FP。对于二维图像信号x (x, y) , 其二维FRFT如下:
在这里插入图片描述
P1和P2表示了在二维空间中的单独分数阶次, 两者可以相同, 也可以不同。当阶数接近于0时, 分数阶傅立叶变换将主要反映信号的时域特征, 当阶数接近于1时, 分数阶傅立叶变换将主要反映信号的频域特征, 为不失一般性, 本文令变换阶数P1=P2=0.3。

2 基于分数阶傅立叶变换的水印算法
2.1 水印的嵌入算法

为了保证水印算法的鲁棒性, 水印应该嵌入到图像的重要分量上, 通常重要分量为变换域系数集中幅值较大的系数。信号的分数阶傅立叶变换系数为一复数, 与变换域水印算法的基本原理相同, 分数阶傅立叶变换域水印的嵌入也是通过对信号的傅立叶变换系数的修改来实现的, 在这里我们采用加性嵌入规则。

(1) 对大小为N×N的图像I(x,y)进行二维分数阶傅立叶变换, 变换阶数为 (0.3, 0.3) , 将二维分数阶傅立叶变换系数按照递减顺序重新排列为序列S={Si|Si≥Si−1}。较大的分数阶傅立叶变换, 系数嵌入水印, 嵌入后的水印图像会产生比较明显的失真;较小的分数阶傅立叶变换系数嵌入水印, 算法对抗压缩和低通滤波攻击的性能不好。所以, 在嵌入水印时将最大的L个系数舍弃不用, 而将水印嵌入其后的M个系数中。

(2) 令水印数据是一个伪随机序列, 序列的长度为M‚R={Ri|i=1,2,…,M}, 那么在这种算法中, 水印的容量就可用伪随机序列的长度M来表示, 便于进行统计分析。

(3) 采用加性规则表示分数阶傅立叶变换域水印嵌入的过程如下:
Swi=Si+αRii=L+1, L+2, …, L+M (4)
其中, α为水印的嵌入强度。

(4) 将嵌入水印之后的序列Swi重新排列为N×N的矩阵, 对其进行变换阶数为 (-0.3, -0.3) 的二维分数阶傅立叶变换, 得到含有水印的图像。

2.2 水印的检测方法
水印的检测过程为水印加入的逆过程, 采用相关检测方法。水印提取的过程如下:将水印图像和原始图像分别进行(0.3,0.3)的分数阶傅立叶变换, 从中抽取值序列V′={v′1,v′2,⋯,vL´}和V={v1,v2,⋯,vL}。利用水印的嵌入公式, 水印的提取如下:
wi = v′i-vi/α (5)
由此得到提取出的水印序列X∗={x1∗,x2∗,⋯,xL∗}, 通过式 (5) 计算X与原来嵌入的水印序列X={x1,x2,⋯,xL}的相似度如下:
在这里插入图片描述
引入一个可以判断X
和X是否相似的门限值T, 在实验中, 为减少误判和错判, 一般将T设为6, 如果sim(X,X∗)>6, 就可认为X*是由X派生的。

⛄二、部分源代码

close all;
clear all;
clc;
a=0.5;
alpha=0.08;
A = imread(‘lenaTest3.jpg’);
w = imread(‘cameraman.pgm’);
W=double(w);
[W_IM,S,Uw,Vw ] = embedding(A,W,a,alpha);
[ EX_WM ] = extraction(S,W,W_IM ,a,alpha,Uw,Vw);
[ N_IM ] = addnoise(A,S,W,W_IM ,a,alpha,Uw,Vw);
[ Blur_IM ] = blurring(A,S,W,W_IM ,a,alpha,Uw,Vw);
[ compress_IM ] = compression(A,S,W,W_IM ,a,alpha,Uw,Vw);
[ crop_IM ] = cropping(A,S,W,W_IM ,a,alpha,Uw,Vw );
[R_IM1,R_IM2] = Rotation( A,S,W,W_IM ,a,alpha,Uw,Vw );
[I] = row_col_blank( A,S,W,W_IM ,a,alpha,Uw,Vw );
[ sharp_IM ] = sharpening( A,S,W,W_IM ,a,alpha,Uw,Vw );
[ J] = translation( A, S,W,W_IM ,a,alpha,Uw,Vw);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]杨守义,姬留杰,穆晓敏,齐林.基于FRFT的数字水印算法分析[J].计算机应用与软件. 2009,26(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【图像隐写】基于matlab FRFT+SVD盲水印嵌入+攻击+提取【含Matlab源码 1757期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893085

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

基于Python开发批量提取Excel图片的小工具

《基于Python开发批量提取Excel图片的小工具》这篇文章主要为大家详细介绍了如何使用Python中的openpyxl库开发一个小工具,可以实现批量提取Excel图片,有需要的小伙伴可以参考一下... 目前有一个需求,就是批量读取当前目录下所有文件夹里的Excel文件,去获取出Excel文件中的图片,并

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

详解如何使用Python提取视频文件中的音频

《详解如何使用Python提取视频文件中的音频》在多媒体处理中,有时我们需要从视频文件中提取音频,本文为大家整理了几种使用Python编程语言提取视频文件中的音频的方法,大家可以根据需要进行选择... 目录引言代码部分方法扩展引言在多媒体处理中,有时我们需要从视频文件中提取音频,以便进一步处理或分析。本文

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像