Python | 海表面温度(SST) | 长期趋势和异常分析

2024-04-10 23:28

本文主要是介绍Python | 海表面温度(SST) | 长期趋势和异常分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

趋势和异常分析(Trend and anomaly)在大气和海洋学研究中被广泛用于探测长期变化。

趋势分析(Trend Analysis):

趋势分析是一种用于检测数据随时间的变化趋势的方法。在海洋学和大气学中,常见的趋势分析包括海表面温度(SST)、海平面上升、气温变化等。趋势分析通常包括以下步骤:

  • 数据预处理:首先需要对数据进行预处理,包括去除季节循环、填补缺失值等。
  • 计算趋势:采用统计方法(如线性回归、非线性回归)来计算数据随时间的变化趋势。常见的趋势计算方法包括最小二乘法、曲线拟合等。
  • 趋势显著性检验:对计算得到的趋势进行显著性检验,以确定趋势是否具有统计显著性。常见的显著性检验方法包括t检验、F检验等。
  • 趋势可视化:将计算得到的趋势以图形方式呈现,通常使用折线图或柱状图来展示数据随时间的变化趋势。

趋势分析的结果可以帮助科学家们了解气候系统的长期演变趋势,从而预测未来可能的变化情况。

异常分析(Anomaly Analysis):

异常分析是一种用于检测数据中非正常事件或突发事件的方法。在海洋学和大气学中,异常分析通常用于检测气候系统中的异常事件,如El Niño事件、极端气候事件等。异常分析通常包括以下步骤:

  • 基准确定:选择一个合适的基准期,通常是一段相对稳定的时间段,用于计算异常值。
  • 计算异常:将观测数据与基准期的平均值进行比较,计算出每个时间点的异常值。异常值表示该时间点的数据与基准期相比的偏离程度。
  • 异常检测:对计算得到的异常值进行检测,识别出突发事件或非正常事件。
  • 异常可视化:将计算得到的异常值以图形方式呈现,通常使用折线图或柱状图来展示异常事件的发生情况。
    异常分析的结果可以帮助科学家们理解气候系统中的非正常事件,从而采取相应的应对措施或预测未来可能发生的异常情况。

本案例分析以海表温度为例,计算了1982年至2016年全球每十年的温度变化率。此外,还给出了其面积加权的全球月海温异常时间序列。

  • 数据来源:
    NOAA Optimum Interpolation (OI) Sea Surface Temperature (SST) V2

  • 下载地址:
    https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html

image

NOAA Optimum Interpolation (OI) Sea Surface Temperature (SST) V2

  • 空间分辨率:
1.0纬度 x 1.0经度全球网格(180x360)。
  • 覆盖范围
89.5 N-89.5 S 0.5 E-359.5 E.

因为oisst是一个插值数据,所以它覆盖了海洋和陆地。
因此,必须同时使用陆地-海洋掩膜数据,可以从如下网站获得:

https://psl.noaa.gov/repository/entry/show?entryid=b5492d1c-7d9c-47f7-b058-e84030622bbd

mask data

1. 加载基础库

import numpy as np
import datetime 
import cftime
from netCDF4 import Dataset as netcdf # netcdf4-python module
import netCDF4 as nc
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
import matplotlib.dates as mdates
from matplotlib.dates import MonthLocator, WeekdayLocator, DateFormatter
import matplotlib.ticker as ticker
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 15, 6
import warnings
warnings.simplefilter('ignore')# Your code continues here# ================================================================================================
# Author: %(Jianpu)s | Affiliation: Hohai
# Email : %(email)s
# Last modified: 2024-04-04 12:28:06
# Filename: Trend and Anomaly Analyses.py
# Description:
# =================================================================================================

2. 读取数据、提取变量

2.1 Read SST


ncset= netcdf(r'G:/code_daily/sst.mnmean.nc')
lons = ncset['lon'][:]  
lats = ncset['lat'][:]           
sst  = ncset['sst'][1:421,:,:]    # 1982-2016 to make it divisible by 12
nctime = ncset['time'][1:421]
t_unit = ncset['time'].unitstry :t_cal =ncset['time'].calendar
except AttributeError : # Attribute doesn't existt_cal = u"gregorian" # or standardnt, nlat, nlon = sst.shape
ngrd = nlon*nlat

2.2 解析时间

datevar = nc.num2date(nctime,units = "days since 1800-1-1 00:00:00")
print(datevar.shape)datevar[0:5]

2.3读取 mask (1=ocen, 0=land)

lmfile = 'G:/code_daily/lsmask.nc'
lmset  = netcdf(lmfile)
lsmask = lmset['mask'][0,:,:]
lsmask = lsmask-1num_repeats = nt
lsm = np.stack([lsmask]*num_repeats,axis=-1).transpose((2,0,1))
lsm.shape

2.3 将海温的陆地区域进行掩膜

sst = np.ma.masked_array(sst, mask=lsm)
3. Trend Analysis
3.1 计算线性趋势
sst_grd  = sst.reshape((nt, ngrd), order='F') 
x        = np.linspace(1,nt,nt)#.reshape((nt,1))
sst_rate = np.empty((ngrd,1))
sst_rate[:,:] = np.nanfor i in range(ngrd): y = sst_grd[:,i]   if(not np.ma.is_masked(y)):         z = np.polyfit(x, y, 1)sst_rate[i,0] = z[0]*120.0#slope, intercept, r_value, p_value, std_err = stats.linregress(x, sst_grd[:,i])#sst_rate[i,0] = slope*120.0     sst_rate = sst_rate.reshape((nlat,nlon), order='F')

3 绘制趋势空间分布

spacia distribution

plt.figure(dpi=200)
m = Basemap(projection='cyl', llcrnrlon=min(lons), llcrnrlat=min(lats),urcrnrlon=max(lons), urcrnrlat=max(lats))x, y = m(*np.meshgrid(lons, lats))
clevs = np.linspace(-0.5, 0.5, 21)
cs = m.contourf(x, y, sst_rate.squeeze(), clevs, cmap=plt.cm.RdBu_r)
m.drawcoastlines()
#m.fillcontinents(color='#000000',lake_color='#99ffff')cb = m.colorbar(cs)
cb.set_label('SST Changing Rate ($^oC$/decade)', fontsize=12)
plt.title('SST Changing Rate ($^oC$/decade)', fontsize=16)

4. Anomaly analysis

4.1 转换数据大小为: (nyear) x (12) x (lat x lon)

sst_grd_ym  = sst.reshape((12,round(nt/12), ngrd), order='F').transpose((1,0,2))
sst_grd_ym.shape

4.2 计算季节趋势

sst_grd_clm = np.mean(sst_grd_ym, axis=0)
sst_grd_clm.shape

4.3 去除季节趋势

sst_grd_anom = (sst_grd_ym - sst_grd_clm).transpose((1,0,2)).reshape((nt, nlat, nlon), order='F')
sst_grd_anom.shape

4.4 计算区域权重

4.4.1 确认经纬度的方向

print(lats[0:12])
print(lons[0:12])

4.4.2 计算随纬度变化的区域权重

lonx, latx = np.meshgrid(lons, lats)
weights = np.cos(latx * np.pi / 180.)
print(weights.shape)

4.4.3 计算全球、北半球、南半球的有效网格总面积

sst_glb_avg = np.zeros(nt)
sst_nh_avg  = np.zeros(nt)
sst_sh_avg  = np.zeros(nt)for it in np.arange(nt):sst_glb_avg[it] = np.ma.average(sst_grd_anom[it, :], weights=weights)sst_nh_avg[it]  = np.ma.average(sst_grd_anom[it,0:round(nlat/2),:],    weights=weights[0:round(nlat/2),:])sst_sh_avg[it]  = np.ma.average(sst_grd_anom[it,round(nlat/2):nlat,:], weights=weights[round(nlat/2):nlat,:])

4.5 转换时间为字符串格式

datestr = [date.strftime('%Y-%m-%d') for date in datevar]

5. 绘制海温异常时间序列

temporal distribution

fig, ax = plt.subplots(1, 1 , figsize=(15,5),dpi=200)ax.plot(datestr[::12], sst_glb_avg[::12], color='b', linewidth=2, label='GLB')
ax.plot(datestr[::12], sst_nh_avg[::12],  color='r', linewidth=2, label='NH')
ax.plot(datestr[::12], sst_sh_avg[::12],  color='g', linewidth=2, label='SH')
ax.set_xticklabels(datestr[::12], rotation=45)
ax.axhline(0, linewidth=1, color='k')
ax.legend()
ax.set_title('Monthly SST Anomaly Time Series (1982 - 2016)', fontsize=16)
ax.set_xlabel('Month/Year ', fontsize=12)
ax.set_ylabel('$^oC$', fontsize=12)
ax.set_ylim(-0.6, 0.6)
fig.set_figheight(9)# rotate and align the tick labels so they look better
fig.autofmt_xdate()
# use a more precise date string for the x axis locations in the toolbar
ax.fmt_xdata = mdates.DateFormatter('%Y')

http://unidata.github.io/netcdf4-python/

http://www.scipy.org/

本文由mdnice多平台发布

这篇关于Python | 海表面温度(SST) | 长期趋势和异常分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/892451

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、