计算psnr ssim niqe fid mae lpips等指标的代码

2024-04-10 21:28

本文主要是介绍计算psnr ssim niqe fid mae lpips等指标的代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 以下代码仅供参考,路径处理最好自己改一下
# Author: Wu
# Created: 2023/8/15
# module containing metrics functions
# using package in https://github.com/chaofengc/IQA-PyTorch
import torch
from PIL import Image
import numpy as np
from piqa import PSNR, SSIM
import pyiqa
import argparse
import os
from collections import defaultdict
first = True
first2 = True
lpips_metric = None
niqe_metric = None
config = None
def read_img(img_path, ref_image=None):img = Image.open(img_path).convert('RGB')# resize gt to size of inputif ref_image is not None: w,h = img.size_,_, h_ref, w_ref = ref_image.shapeif w_ref!=w or h_ref!=h:img = img.resize((w_ref, h_ref), Image.ANTIALIAS)img = (np.asarray(img)/255.0)img = torch.from_numpy(img).float()img = img.permute(2,0,1)img = img.to(torch.device(f'cuda:{config.device}')).unsqueeze(0)return img.contiguous()def get_NIQE(enhanced_image, gt_path=None):niqe_metric = pyiqa.create_metric('niqe', device=enhanced_image.device).to(torch.device(f'cuda:{config.device}'))return  niqe_metric(enhanced_image)
def get_FID(enhanced_image_path, gt_path):fid_metric = pyiqa.create_metric('fid').to(torch.device(f'cuda:{config.device}'))score = fid_metric(enhanced_image_path, gt_path)return score
def get_psnr(enhanced_image, gt_path):gtimg = Image.open(gt_path).convert('RGB')gtimg = gtimg.resize((1200, 900), Image.ANTIALIAS)gtimg = (np.asarray(gtimg)/255.0)gtimg = torch.from_numpy(gtimg).float()gtimg = gtimg.permute(2,0,1)gtimg = gtimg.to(torch.device(f'cuda:{config.device}')).unsqueeze(0).contiguous()criterion = PSNR().to(torch.device(f'cuda:{config.device}'))return criterion(enhanced_image, gtimg).cpu().item()
def get_ssim(enhanced_image, gt_path):gtimg = Image.open(gt_path).convert('RGB')gtimg = gtimg.resize((1200, 900), Image.ANTIALIAS)gtimg = (np.asarray(gtimg)/255.0)gtimg = torch.from_numpy(gtimg).float()gtimg = gtimg.permute(2,0,1)gtimg = gtimg.to(torch.device(f'cuda:{config.device}')).unsqueeze(0).contiguous()criterion = SSIM().to(torch.device(f'cuda:{config.device}'))return criterion(enhanced_image, gtimg).cpu().item()
def get_lpips(enhanced_image, gt_path):gtimg = Image.open(gt_path).convert('RGB')gtimg = gtimg.resize((1200, 900), Image.ANTIALIAS)gtimg = (np.asarray(gtimg)/255.0)gtimg = torch.from_numpy(gtimg).float()gtimg = gtimg.permute(2,0,1)gtimg = gtimg.to(torch.device(f'cuda:{config.device}')).unsqueeze(0).contiguous()iqa_metric = pyiqa.create_metric('lpips', device=enhanced_image.device)return iqa_metric(enhanced_image, gtimg).cpu().item()
def get_MAE(enhanced_image, gt_path):gtimg = Image.open(gt_path).convert('RGB')gtimg = gtimg.resize((1200, 900), Image.ANTIALIAS)gtimg = (np.asarray(gtimg)/255.0)gtimg = torch.from_numpy(gtimg).float()gtimg = gtimg.permute(2,0,1)gtimg = gtimg.to(torch.device(f'cuda:{config.device}')).unsqueeze(0).contiguous()return torch.mean(torch.abs(enhanced_image-gtimg)).cpu().item()def get_metric(enhanced_image, gt_path, metrics):if gt_path is not None:gtimg = read_img(gt_path, enhanced_image)else:gtimg = Noneres = dict()if 'psnr' in metrics:psnr = PSNR().to(torch.device(f'cuda:{config.device}'))res['psnr'] = psnr(enhanced_image, gtimg).cpu().item()if 'ssim' in metrics:ssim = SSIM().to(torch.device(f'cuda:{config.device}'))res['ssim'] = ssim(enhanced_image, gtimg).cpu().item()if 'mae' in metrics:res['mae'] = torch.mean(torch.abs(enhanced_image-gtimg)).cpu().item()if 'niqe' in metrics:global first2global niqe_metricif first2:first2 = Falseniqe_metric = pyiqa.create_metric('niqe', device=enhanced_image.device)res['niqe'] = niqe_metric(enhanced_image).cpu().item()if 'lpips' in metrics:global firstglobal lpips_metricif first:first = Falselpips_metric = pyiqa.create_metric('lpips', device=enhanced_image.device)res['lpips'] = lpips_metric(enhanced_image, gtimg).cpu().item()return resdef get_metrics_dataset(pred_path, gt_path, dataset='lol'):if dataset == 'fivek':input_file_path_list = []gt_file_path_list = []file_list = os.listdir(os.path.join(gt_path))for filename in file_list:input_file_path_list.append(os.path.join(pred_path, filename))gt_file_path_list.append(os.path.join(gt_path,  filename))elif dataset == 'lol':input_file_path_list = []gt_file_path_list = []file_list = os.listdir(os.path.join(gt_path))for filename in file_list:input_file_path_list.append(os.path.join(pred_path, filename.replace('normal', 'low')))gt_file_path_list.append(os.path.join(gt_path,  filename))elif dataset == 'EE':input_file_path_list = []gt_file_path_list = []file_list = os.listdir(os.path.join(pred_path))for filename in file_list:input_file_path_list.append(os.path.join(pred_path, filename))suffix = filename.split('_')[-1]new_filename = filename[:-len(suffix)-1]+'.jpg'gt_file_path_list.append(os.path.join(gt_path,  new_filename))elif dataset == 'upair':input_file_path_list = []gt_file_path_list = []file_list = os.listdir(os.path.join(pred_path))for filename in file_list:input_file_path_list.append(os.path.join(pred_path, filename))gt_file_path_list.append(None)else:print(f'{dataset} not supported')exit()return input_file_path_list, gt_file_path_listif __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--gt', type=str, default="/data1/wjh/LOL_v2/Real_captured/eval/gt")parser.add_argument('--pred', type=str, default="/data1/wjh/ECNet/baseline/gt_referenced/output")parser.add_argument('--dataset', type=str, default="lol")parser.add_argument('--device', type=str, default="0")parser.add_argument('--psnr', action='store_true')parser.add_argument('--ssim', action='store_true')parser.add_argument('--fid', action='store_true')parser.add_argument('--niqe', action='store_true')parser.add_argument('--lpips', action='store_true')parser.add_argument('--mae', action='store_true')config = parser.parse_args()print(config)gt_path = config.gtpred_path = config.pred# os.environ['CUDA_VISIBLE_DEVICES']=config.deviceassert os.path.exists(gt_path), 'gt_path not exits'assert os.path.exists(pred_path), 'pred_path not exits'metrics_names = []for metrics_name in ['psnr', 'ssim', 'niqe', 'lpips', 'mae']:if vars(config)[metrics_name]:metrics_names.append(metrics_name)# compute metricsmetrics_dict = defaultdict(list)metrics = dict()with torch.no_grad():# load img pathinput_file_paths,  gt_file_paths = get_metrics_dataset(pred_path, gt_path, config.dataset)# read img and compute metricsfor input_file_path, gt_file_path in zip(input_file_paths, gt_file_paths):# print(input_file_path)pred = read_img(input_file_path)metrics = get_metric(pred, gt_file_path, metrics_names)for metrics_name in metrics:metrics_dict[metrics_name].append(metrics[metrics_name])for metrics_name in metrics:print(f'{metrics_name}: {np.mean(metrics_dict[metrics_name])}')if config.fid:fid_score = get_FID(pred_path, gt_path)print(F'fid: {fid_score}')

这篇关于计算psnr ssim niqe fid mae lpips等指标的代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/892186

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时