MPC模型预测控制(四)-MATLAB跟踪圆

2024-04-10 14:58

本文主要是介绍MPC模型预测控制(四)-MATLAB跟踪圆,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考https://github.com/Janani-Mohan

%% YALMIP : Circular Trajectory Tracking using MPC 
clc;
clear;
close all;
yalmip('clear')%% MPC Parameters definition
% Model Parameters
params.Ts = 0.01;   % Sampling time 
params.nstates = 3; % No of States in the system [x, y,theta]
params.ninputs = 1; % No of Inputs in the system [delta_f], steering angle
params.l_f = 0.17; % Distance from the CG to the front wheel
params.l_r = 0.16; % Distance from the CG to the rear wheel
params.l_q = params.l_r / (params.l_r + params.l_f);% Control Parameters
params.Np = 10;   % The horizon 30
params.Q = [1 0 0; 0 1 0; 0 0 1]; % The Q matrix for running cost for error in trajectory tracking
params.Q_N = [1 0 0; 0 1 0; 0 0 1];% The Q matrix for terminal cost for error in trajectory tracking
params.R = 1; %  The R matrix for running cost for input% Initial conditions for the state of the vehicle       
params.x0 = 1.5;  %1.5
params.y0 = 0;  
params.v0 = 1; 
params.psi0 = pi/2; % Number of iterations
params.N = 500;%1000% Every point on the circle is a reference to be followed by the vehicle
% x0 and y0 are the coordinates of the circle's center,r is its radius.
trajectory_params.x0 = 0;
trajectory_params.y0 = 0;
trajectory_params.r = 1.5;%% Simulation environment
% Initialization
z(1,:)  = [params.x0, params.y0, params.psi0]; % State representation
u(1) = 0; % Control Input% Generate the trajectory to be followed
traj = trajectory_circular(trajectory_params);% Obtain the symbolic form of the matrices A, B
syms xkn ykn psikn xk yk psik Ts lr lf delta
[symbolic_linear_A, symbolic_linear_B] = Symbolic_Kinematic_Model(params);k = 0;
while (k < params.N)k = k+1;  
%   fprintf("Iteration number = %d ",k);% The distances of all the points in the trajectory to the vehicled = sqrt((traj(:,1)-z(k,1)).^2 + (traj(:,2)-z(k,2)).^2);% The index of the point that is the closest to the vehicle[~, idx] = min(d);% The first reference point for x, y, thetaz_ref(k,:) = traj(idx, :);   refs = zeros(params.Np+1, 3);for i = 1:params.Np+1theta = z_ref(k,3) +(params.v0 / trajectory_params.r) * params.Ts * i;x = trajectory_params.x0 + trajectory_params.r * cos(theta - pi/2);y = trajectory_params.y0 + trajectory_params.r * sin(theta - pi/2);refs(i,:) = [x, y, theta];end
%   plot(refs(:,1),refs(:,2));
% The first case
if (k == 1)params.A = subs(symbolic_linear_A, [Ts lr lf psik delta], [params.Ts params.l_r params.l_f z(k,3) 0]);params.B = subs(symbolic_linear_B, [Ts lr lf psik delta], [params.Ts params.l_r params.l_f z(k,3) 0]);params.A = double(params.A);params.B = double(params.B);
end
% The remaining cases
if (k > 1)% Completing the circleif (z_ref(k,3) < z_ref(k-1,3))    refs(:,3) = refs(:,3) + 2*pi;z_ref(k,3) = z_ref(k,3) + 2*pi;traj(idx,3) = traj(idx,3) + 2*pi;endparams.A = subs(symbolic_linear_A, [Ts lr lf psik delta], [params.Ts params.l_r params.l_f z(k,3) u(k-1)]);params.B = subs(symbolic_linear_B, [Ts lr lf psik delta], [params.Ts params.l_r params.l_f z(k,3) u(k-1)]);params.A = double(params.A);params.B = double(params.B);
end% Ensure stability : Ricatti Equation Solver is used to ensure stability 
% finding stable Q matrix[params.Qf,~,~,err] = dare(params.A, params.B, params.Q, params.R);if (err == -1 || err == -2)params.Qf = params.Q;endyalmip('clear')% The predicted state and control variablesz_mpc = sdpvar(params.Np+1, params.nstates);u_mpc = sdpvar(params.Np, params.ninputs);% Reset constraints and objective functionconstraints = [];J = 0;for i = 1:params.Npif i < params.NpJ = J + (z_mpc(i,:)-refs(i,:)) * params.Qf * (z_mpc(i,:)-refs(i,:))' +  ...u_mpc(i,:) * params.R * u_mpc(i,:)';% Model constraintsconstraints = [constraints, ...z_mpc(i+1,:)' == params.A * z_mpc(i,:)' + params.B * u_mpc(i,:)'];% Input constraintsconstraints = [constraints, ...-pi/4 <= u_mpc(i) <= pi/4];elseJ = J + ...(z_mpc(i,:)-refs(i,:)) * params.Q_N * (z_mpc(i,:)-refs(i,:))' +  ...u_mpc(i,:) * params.R * u_mpc(i,:)';% Model constraintsconstraints = [constraints, ...z_mpc(i+1,:)' == params.A * z_mpc(i,:)' + params.B * u_mpc(i,:)'];% Input constraintsconstraints = [constraints, ...-pi/4 <= u_mpc(i) <= pi/4];endend%  terminal costJ = J + (z_mpc(params.Np+1, :) - refs(params.Np+1,:)) * params.Qf * (z_mpc(params.Np+1, :)-refs(params.Np+1,:))';% terminal constraintsconstraints = [constraints, ...z_mpc(params.Np+1, 3) - refs(params.Np+1, 3) == 0];assign(z_mpc(1,:), z(k,:));% Optionsops = sdpsettings('solver', 'quadprog');% Optimizeoptimize([constraints, z_mpc(1,:) == z(k,:)], J, ops);% Take the first predicted input u(k) = value(u_mpc(1));% simulate the vehiclez(k+1,:) = vehicle_model(z(k,:), u(k), params);plot(traj(:,1), traj(:,2))hold onplot(z(2:end,1), z(2:end,2));plot(refs(:,1), refs(:,2), '*', 'Color','b')plot(z(k,1), z(k,2), '*', 'Color', 'r')axis equalaxis([-2 2 -2 2])drawnowtitle('Trajectory Tracking')hold offend
% Plot state deviations and inputs
figure
subplot(2,2,1)
plot(traj(:,1), traj(:,2),'-*r')
hold on
plot(z(:,1), z(:,2))
title('Trajectory Tracking')
legend ('Given Trajectory','My Trajectory','location','southeast');
axis equal
hold offsubplot(2,2,2)
plot((z(1:end-1, 1) - z_ref(:,1)).^2 + (z(1:end-1, 2) - z_ref(:,2)).^2)
xlabel('No of iterations');
ylabel('Deviation from the reference trajectory');
title('Distance deviation')subplot(2,2,3)
plot((z_ref(:,3) - z(1:end-1,3))*180/pi)
xlabel('No of iterations');
ylabel('Deviation from the reference trajectory');
title('Orientation deviation')figure
plot(u * 180 / pi)
xlabel('No of iterations');
ylabel('Variation in steering angle');
title('Input Steering Angle')
% 
% %% Trajectory Generator
% 
% %Creates the Trajectory to Follow
% function traj = trajectory_circular(trajectory_params)
% % Center of the circular trajectory 
%   x0 = trajectory_params.x0;
%   y0 = trajectory_params.y0;
%   r = trajectory_params.r;
% 
% % Creates the circular trajectory and corresponding angle
%   for i = 0:1:360
%       x = x0 + r*cos(pi * i / 180);
%       y = y0 + r*sin(pi * i / 180);
%       theta = pi - atan2(x - x0, y - y0);
% 
%       traj(i+1, 1) = x;
%       traj(i+1, 2) = y;
%       traj(i+1, 3) = theta;
%   end
%   
% end
% 
% %% Kinematic Bicycle Model
% 
% function [A, B] = Symbolic_Kinematic_Model(params)
% 
%   syms xkn ykn psikn xk yk psik Ts lr lf delta
%   
%   xkn = xk + Ts*params.v0*cos(psik + atan((lr/(lr+lf))*tan(delta)));
%   ykn = yk + Ts*params.v0*sin(psik + atan((lr/(lr+lf))*tan(delta)));
%   psikn = psik + Ts*(params.v0/lr)*sin(atan((lr/(lr+lf))*tan(delta)));
% 
%   A(1,1) = diff(xkn, xk);
%   A(1,2) = diff(xkn, yk);
%   A(1,3) = diff(xkn, psik);
% 
%   A(2,1) = diff(ykn, xk);
%   A(2,2) = diff(ykn, yk);
%   A(2,3) = diff(ykn, psik);
% 
%   A(3,1) = diff(psikn, xk);
%   A(3,2) = diff(psikn, yk);
%   A(3,3) = diff(psikn, psik);
% 
%   B(1,1) = diff(xkn, delta);
%   B(2,1) = diff(ykn, delta);
%   B(3,1) = diff(psikn, delta);
% 
% end
% 
% %% Vehicle Model
% function z_new = vehicle_model(z_curr, u_curr, params)
%     
%   delta = u_curr;
%   
%   % vehicle dynamics equations
%   z_new(1) = z_curr(1) + (params.v0*cos(z_curr(3)+atan((params.l_r/(params.l_r+params.l_f))*tan(delta))))*params.Ts;
%   z_new(2) = z_curr(2) + (params.v0*sin(z_curr(3)+atan((params.l_r/(params.l_r+params.l_f))*tan(delta))))*params.Ts;
%   z_new(3) = z_curr(3) + (params.v0 / params.l_r * sin(atan((params.l_r/(params.l_r+params.l_f))*tan(delta))))*params.Ts;
% 
% end

注释掉的有三个函数:轨迹函数,运动自行车模型函数,实际的运动结果函数。需要放到同文件夹里生成.m的函数。这里没有一一复制。这个需要安装yawmip,免费的。参考链接:https://blog.csdn.net/XIXI_0921/article/details/47981869

希望有志之士能把这个函数改为跟踪8字形。我试了下没成功,用NMPC的程序倒是能跟踪上。大家有问题就交流。对程序里有不理解的也可以评论问我,我会做相应解答。

这篇关于MPC模型预测控制(四)-MATLAB跟踪圆的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891387

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt