MPC模型预测控制(二)-MATLAB代码实现

2024-04-10 14:58

本文主要是介绍MPC模型预测控制(二)-MATLAB代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

update:MPC的QQ群

第一个群已经满500人(贫穷使我充不起鹅厂会员),这是第二个群。

群都满了。

 

https://blog.csdn.net/tingfenghanlei/article/details/85046120在这篇文章里主要讲了下MPC的原理和C++实现的一个简单例子。

这篇文章里主要写MPC的MATLAB实现。许多做控制的同学还是很喜欢用MATLAB的,可以先用MATLAB跑跑看自己的代码效果怎么样。

我看MPC的MATLAB代码实现,主要看的是《无人驾驶车辆模型预测控制》这本书,书里的代码也比较完备。这里实现的代码基本上都是这本书中的,CSDN也有下载链接,大家可以去下载观看。

在实现MPC的代码之前,书中讲了LQR的代码实现。

LQR和MPC的区别:

LQR solves an optimization,

MPC solves a constrained optimization

In practice, optimization could lead to over-voltage, ovre-current, excessive force etc. You want a motor starts very quickly? The optimizer tells you give it an infinite electric current. So you use a saturation which destroys the optimality. MPC solves an optimization without excessing the limits.

In addition, LQR can be solved offline for an LTI system. However, MPC is not a linear controller. Typically, it must be solved online at each sample time. It requires higher computational load. MPC has toolbox in MATLAB. You can use it before you learn its theory in deep.

参考链接https://www.quora.com/Whats-the-difference-between-constrained-LQR-and-MPC

function LQR_1()
%这里先从简单开始,给定一个直线车道和车辆位置偏差。
%参考轨迹的生成方法有两种:
%1.车辆在Path上投影,然后在PATH上选取一系列的点作参考点
%*现在遇到的问题是Q R的参数怎么设置。而且通用性怎么办?*%clear all;
close all;
clc;
%% 给定参数:vel = 6; % 纵向车速,单位:m/s
L=2.85;%轴距
T=0.05;% sample time, control period
% 给定圆形参考轨迹CEN=[0,0];       % 圆心Radius=20;       % 半径%% 设置参数
Hp =10;%predictive horizion, control horizon 
N_l=200;% 设置迭代次数Nx=3;%状态变量参数的个数
Nu=1;%控制变量参数的个数FWA=zeros(N_l,1);%前轮偏角
FWA(1,1)= 0; %初始状态的前轮偏角x_real=zeros(Nx,N_l);%实际状态
x_real(:,1)= [22 0 pi/2]; %x0=车辆初始状态X_init初始状态
% x_piao=zeros(N_l,Nx);%实际状态与参考轨迹的误差
% 
% u_real=zeros(N_l,Nu);%实际的控制量
% u_piao=zeros(N_l,Nu);%实际控制量与参考控制量的误差% X_PIAO=zeros(N_l,3*Hp);%通过DR估计的状态
% 
% XXX=zeros(N_l,3*Hp);%用于保持每个时刻预测的所有状态值RefTraj=zeros(3,1);
Delta_x = zeros(3,1);Q=[10 0 0; 0 10 0; 0 0 100];
R=[10];%r是对控制量误差的weighting matricePk=[1 0 0; 0 1 0; 0 0 1]; %人为给定,相当于QN
Vk=[0 0 0]'; %人为给定,相当于QN%%  算法实现u_feedBackward=0;u_feedForward=0;%*首先生成参考轨迹,画出图来作参考*%[RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(x_real(1,1),x_real(1,2),CEN(1),CEN(2),Radius,250,vel,T,L);figure(1) %绘制参考路径
plot(RefTraj_x,RefTraj_y,'k')
xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
title('Plot of x vs y - Ref. Trajectory');
legend('reference traj');
axis equal 
grid on
hold onfor i=1:1:N_lG_Test = 3;%先确定参考点和确定矩阵A,B.这里姑且认为A和B是不变的[RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(x_real(1,i),x_real(2,i),CEN(1),CEN(2),Radius,Hp,vel,T,L);u_feedForward = RefTraj_delta(G_Test);%前馈控制量
%     u_feedForward=0;RefTraj_x(G_Test)RefTraj_y(G_Test)RefTraj_theta(G_Test)Delta_x(1,1) = x_real(1,i) - RefTraj_x(G_Test);Delta_x(2,1) = x_real(2,i) - RefTraj_y(G_Test);Delta_x(3,1) = x_real(3,i) - RefTraj_theta(G_Test);if  Delta_x(3,1) > piDelta_x(3,1) = Delta_x(3,1)-2*pi;else if Delta_x(3,1) < -1*piDelta_x(3,1) = Delta_x(3,1) +2*pi;elseDelta_x(3,1) = Delta_x(3,1);end            end% 通过Backward recursion 求K    for  j=Hp:-1:2   Pk_1 = Pk;Vk_1 = Vk;     A=[1    0   -vel*sin(RefTraj_theta(j-1))*T; 0    1   vel*cos(RefTraj_theta(j-1))*T; 0    0   1;];
%         B=[cos(RefTraj_theta(j-1))*T   0; sin(RefTraj_theta(j-1))*T   0; 0            vel*T/L;]; COS2 = cos(RefTraj_delta(j-1))^2;B=[ 0 0  vel*T/(L*COS2)]'; K = (B'*Pk_1*A)/(B'*Pk_1*B+R);Ku = R/(B'*Pk_1*B+R);Kv = B'/(B'*Pk_1*B+R);Pk=A'*Pk_1*(A-B*K)+Q;   Vk=(A-B*K)'*Vk_1 - K'*R*RefTraj_delta(j-1); endu_feedBackward = -K*(Delta_x)-Ku*u_feedForward-Kv*Vk_1;  FWA(i+1,1)=u_feedForward+u_feedBackward;[x_real(1,i+1),x_real(2,i+1),x_real(3,i+1)]=Func_VehicleKineticModule_Euler(x_real(1,i),x_real(2,i),x_real(3,i),vel,FWA(i,1),FWA(i+1,1),T,L);  end%%   绘图
%        figure(1);
%     plot(RefTraj_x,RefTraj_y,'b')
%     hold on;plot(x_real(1,:),x_real(2,:),'r*');title('跟踪结果对比');xlabel('横向位置X');% axis([-1 5 -1 3]);ylabel('纵向位置Y');  end

还有4个子函数

function K=Func_Alpha_Pos(Xb,Yb,Xn,Yn)
AngleY=Yn-Yb;
AngleX=Xn-Xb;
%***求Angle*******%
if Xb==Xnif Yn>YbK=pi/2;elseK=3*pi/2;end
elseif Yb==Ynif Xn>XbK=0;elseK=pi;endelseK=atan(AngleY/AngleX);end    
end
%****修正K,使之在0~360°之间*****%if (AngleY>0&&AngleX>0)%第一象限K=K;elseif (AngleY>0&&AngleX<0)||(AngleY<0&&AngleX<0)%第二、三象限K=K+pi;else if (AngleY<0&&AngleX>0)%第四象限K=K+2*pi;  elseK=K;endend
end
function Theta=Func_Theta_Pos(Alpha)if Alpha >= 3*pi/2Theta = Alpha-3*pi/2;
elseTheta = Alpha+pi/2;
endend
function [RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(Pos_x,Pos_y,CEN_x,CEN_y,Radius,N,Velo,Ts,L)
%RefTraj为要生成的参考路径
%Pos_x,Pos_y为车辆坐标
%CEN_x,CEN_y,Radius圆心与半径
%N要生成几个参考点,即预测空间。
%Velo,Ts车速与采样时间
%L汽车的轴距
RefTraj=zeros(N,4);%生成的参考路径
Alpha_init=Func_Alpha_Pos(CEN_x,CEN_y,Pos_x,Pos_y);%首先根据车辆位置和圆心确定alphaOmega=Velo/Radius%已知车速和半径,可以求得角速度。DFWA=atan(L/Radius);for k=1:1:NAlpha(k)=Alpha_init+Omega*Ts*(k-1);RefTraj(k,1)=Radius*cos(Alpha(k))+CEN_x;%xRefTraj(k,2)=Radius*sin(Alpha(k))+CEN_y;%yRefTraj(k,3)=Func_Theta_Pos(Alpha(k));%theta  RefTraj(k,4)=DFWA;%前轮偏角,可以当做前馈量end
RefTraj_x= RefTraj(:,1);
RefTraj_y= RefTraj(:,2);
RefTraj_theta= RefTraj(:,3);
RefTraj_delta= RefTraj(:,4);end
function [X,Y,H]=Func_VehicleKineticModule_Euler(x,y,heading,vel,FWA,DFWA,T,L)
%车辆运动学模型,状态量,x,y,heading;控制量:vel=constant,FWA
%固定的步数,来求得数值解%%
%initial the status of the vehicle
num=100;
Xmc=zeros(1,num);
Ymc=zeros(1,num);
Headingmc=zeros(1,num);
Xmc(1)=x;
Ymc(1)=y;%x,y初始坐标
Headingmc(1)=heading;%航向,Headingrate=zeros(1,num);
FrontWheelAngle=zeros(1,num);t=T/num;
%%
FrontWheelAngle=linspace(FWA,DFWA,num);%前轮偏角
Headingrate=vel*tan(FrontWheelAngle)/L;
for i=2:numHeadingmc(i)=Headingmc(i-1)+Headingrate(i)*t;Xmc(i)=Xmc(i-1)+vel*t*cos(Headingmc(i-1));Ymc(i)=Ymc(i-1)+vel*t*sin(Headingmc(i-1));
end
%%X=Xmc(num);Y=Ymc(num);H=Headingmc(num);
end%% test
% [X,Y,H]=VehicleKineticModule_Euler(0,0,0,10,0,3,0.1,2.85)
%plot(X,Y,'b');

现在再看看MPC的代码实现

clc;
close all;
clear all;
%% 参考轨迹生成
N=100;%参考轨迹点数量
T=0.05;%采样时间,控制周期
% Xout=zeros(2*N,3);
% Tout=zeros(2*N,1);
Xout=zeros(N,3);
Tout=zeros(N,1);
for k=1:1:NXout(k,1)=k*T;Xout(k,2)=2;Xout(k,3)=0;Tout(k,1)=(k-1)*T;
end%% Tracking a constant reference trajectory
Nx=3;%状态量个数
Nu =2;%控制量个数
Tsim =20;%仿真时间
X0 = [0 0 pi/3];%初始状态
[Nr,Nc] = size(Xout); % Nr is the number of rows of Xout,100*3
% Mobile Robot Parameters
c = [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];
L = 1;%车辆轴距
Rr = 1;
w = 1;
% Mobile Robot variable Model
vd1 = Rr*w; % For circular trajectory,参考系统的纵向速度
vd2 = 0;%参考系统的前轮偏角%根据控制系统的维度信息,提前定义好相关矩阵并赋值
x_real=zeros(Nr,Nc);%X的真实状态
x_piao=zeros(Nr,Nc);%X的误差状态
u_real=zeros(Nr,2);%真实控制量
u_piao=zeros(Nr,2);%误差控制量
x_real(1,:)=X0;%初始状态
x_piao(1,:)=x_real(1,:)-Xout(1,:);%与预期的误差值
X_PIAO=zeros(Nr,Nx*Tsim);
XXX=zeros(Nr,Nx*Tsim);%用于保持每个时刻预测的所有状态值
q=[1 0 0;0 1 0;0 0 0.5];
Q_cell=cell(Tsim,Tsim);
for i=1:1:Tsimfor j=1:1:Tsimif i==jQ_cell{i,j}=q;else Q_cell{i,j}=zeros(Nx,Nx);end end
end
Q=cell2mat(Q_cell);%权重矩阵
R=0.1*eye(Nu*Tsim,Nu*Tsim);%权重矩阵%模型预测控制主体
for i=1:1:Nrt_d =Xout(i,3);a=[1    0   -vd1*sin(t_d)*T;0    1   vd1*cos(t_d)*T;0    0   1;];b=[cos(t_d)*T   0;sin(t_d)*T   0;0            T;];     A_cell=cell(Tsim,1);B_cell=cell(Tsim,Tsim);for j=1:1:TsimA_cell{j,1}=a^j;for k=1:1:Tsimif k<=jB_cell{j,k}=(a^(j-k))*b;elseB_cell{j,k}=zeros(Nx,Nu);endendendA=cell2mat(A_cell);B=cell2mat(B_cell);H=2*(B'*Q*B+R);f=2*B'*Q*A*x_piao(i,:)';A_cons=[];b_cons=[];lb=[-1;-1];ub=[1;1];tic[X,fval(i,1),exitflag(i,1),output(i,1)]=quadprog(H,f,A_cons,b_cons,[],[],lb,ub);%二次规划求解tocX_PIAO(i,:)=(A*x_piao(i,:)'+B*X)';if i+j<Nrfor j=1:1:TsimXXX(i,1+3*(j-1))=X_PIAO(i,1+3*(j-1))+Xout(i+j,1);XXX(i,2+3*(j-1))=X_PIAO(i,2+3*(j-1))+Xout(i+j,2);XXX(i,3+3*(j-1))=X_PIAO(i,3+3*(j-1))+Xout(i+j,3);endelsefor j=1:1:TsimXXX(i,1+3*(j-1))=X_PIAO(i,1+3*(j-1))+Xout(Nr,1);XXX(i,2+3*(j-1))=X_PIAO(i,2+3*(j-1))+Xout(Nr,2);XXX(i,3+3*(j-1))=X_PIAO(i,3+3*(j-1))+Xout(Nr,3);endendu_piao(i,1)=X(1,1);u_piao(i,2)=X(2,1);Tvec=[0:0.05:4];X00=x_real(i,:);vd11=vd1+u_piao(i,1);vd22=vd2+u_piao(i,2);XOUT=dsolve('Dx-vd11*cos(z)=0','Dy-vd11*sin(z)=0','Dz-vd22=0','x(0)=X00(1)','y(0)=X00(2)','z(0)=X00(3)');t=T; x_real(i+1,1)=eval(XOUT.x);x_real(i+1,2)=eval(XOUT.y);x_real(i+1,3)=eval(XOUT.z);if(i<Nr)x_piao(i+1,:)=x_real(i+1,:)-Xout(i+1,:);endu_real(i,1)=vd1+u_piao(i,1);u_real(i,2)=vd2+u_piao(i,2);figure(1);plot(Xout(1:Nr,1),Xout(1:Nr,2));hold on;plot(x_real(i,1),x_real(i,2),'r*');title('跟踪结果对比');xlabel('横向位置X');axis([-1 5 -1 3]);ylabel('纵向位置Y');hold on;for k=1:1:TsimX(i,k+1)=XXX(i,1+3*(k-1));Y(i,k+1)=XXX(i,2+3*(k-1));endX(i,1)=x_real(i,1);Y(i,1)=x_real(i,2);plot(X(i,:),Y(i,:),'y.')hold on;end
% figure(5)
% plot(X(2,:),Y(2,:),'b');
%% 以下为绘图部分
figure(2)
subplot(3,1,1);
plot(Tout(1:Nr),Xout(1:Nr,1),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,1),'k');
%grid on;
%title('状态量-横向坐标X对比');
xlabel('采样时间T');
ylabel('横向位置X')
subplot(3,1,2);
plot(Tout(1:Nr),Xout(1:Nr,2),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,2),'k');
%grid on;
%title('状态量-横向坐标Y对比');
xlabel('采样时间T');
ylabel('纵向位置Y')
subplot(3,1,3);
plot(Tout(1:Nr),Xout(1:Nr,3),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,3),'k');
%grid on;
hold on;
%title('状态量-\theta对比');
xlabel('采样时间T');
ylabel('\theta')figure(3)
subplot(2,1,1);
plot(Tout(1:Nr),u_real(1:Nr,1),'k');
%grid on;
%title('控制量-纵向速度v对比');
xlabel('采样时间T');
ylabel('纵向速度')
subplot(2,1,2)
plot(Tout(1:Nr),u_real(1:Nr,2),'k');
%grid on;
%title('控制量-角加速度对比');
xlabel('采样时间T');
ylabel('角加速度')figure(4)
subplot(3,1,1);
plot(Tout(1:Nr),x_piao(1:Nr,1),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(x)');
subplot(3,1,2);
plot(Tout(1:Nr),x_piao(1:Nr,2),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(y)');
subplot(3,1,3);
plot(Tout(1:Nr),x_piao(1:Nr,3),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(\theta)');

添加了一些注释,但是感觉这个代码写的不是很好。

下次看到好的MPC代码我会放上来。

这篇关于MPC模型预测控制(二)-MATLAB代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891382

相关文章

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount