MPC模型预测控制(二)-MATLAB代码实现

2024-04-10 14:58

本文主要是介绍MPC模型预测控制(二)-MATLAB代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

update:MPC的QQ群

第一个群已经满500人(贫穷使我充不起鹅厂会员),这是第二个群。

群都满了。

 

https://blog.csdn.net/tingfenghanlei/article/details/85046120在这篇文章里主要讲了下MPC的原理和C++实现的一个简单例子。

这篇文章里主要写MPC的MATLAB实现。许多做控制的同学还是很喜欢用MATLAB的,可以先用MATLAB跑跑看自己的代码效果怎么样。

我看MPC的MATLAB代码实现,主要看的是《无人驾驶车辆模型预测控制》这本书,书里的代码也比较完备。这里实现的代码基本上都是这本书中的,CSDN也有下载链接,大家可以去下载观看。

在实现MPC的代码之前,书中讲了LQR的代码实现。

LQR和MPC的区别:

LQR solves an optimization,

MPC solves a constrained optimization

In practice, optimization could lead to over-voltage, ovre-current, excessive force etc. You want a motor starts very quickly? The optimizer tells you give it an infinite electric current. So you use a saturation which destroys the optimality. MPC solves an optimization without excessing the limits.

In addition, LQR can be solved offline for an LTI system. However, MPC is not a linear controller. Typically, it must be solved online at each sample time. It requires higher computational load. MPC has toolbox in MATLAB. You can use it before you learn its theory in deep.

参考链接https://www.quora.com/Whats-the-difference-between-constrained-LQR-and-MPC

function LQR_1()
%这里先从简单开始,给定一个直线车道和车辆位置偏差。
%参考轨迹的生成方法有两种:
%1.车辆在Path上投影,然后在PATH上选取一系列的点作参考点
%*现在遇到的问题是Q R的参数怎么设置。而且通用性怎么办?*%clear all;
close all;
clc;
%% 给定参数:vel = 6; % 纵向车速,单位:m/s
L=2.85;%轴距
T=0.05;% sample time, control period
% 给定圆形参考轨迹CEN=[0,0];       % 圆心Radius=20;       % 半径%% 设置参数
Hp =10;%predictive horizion, control horizon 
N_l=200;% 设置迭代次数Nx=3;%状态变量参数的个数
Nu=1;%控制变量参数的个数FWA=zeros(N_l,1);%前轮偏角
FWA(1,1)= 0; %初始状态的前轮偏角x_real=zeros(Nx,N_l);%实际状态
x_real(:,1)= [22 0 pi/2]; %x0=车辆初始状态X_init初始状态
% x_piao=zeros(N_l,Nx);%实际状态与参考轨迹的误差
% 
% u_real=zeros(N_l,Nu);%实际的控制量
% u_piao=zeros(N_l,Nu);%实际控制量与参考控制量的误差% X_PIAO=zeros(N_l,3*Hp);%通过DR估计的状态
% 
% XXX=zeros(N_l,3*Hp);%用于保持每个时刻预测的所有状态值RefTraj=zeros(3,1);
Delta_x = zeros(3,1);Q=[10 0 0; 0 10 0; 0 0 100];
R=[10];%r是对控制量误差的weighting matricePk=[1 0 0; 0 1 0; 0 0 1]; %人为给定,相当于QN
Vk=[0 0 0]'; %人为给定,相当于QN%%  算法实现u_feedBackward=0;u_feedForward=0;%*首先生成参考轨迹,画出图来作参考*%[RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(x_real(1,1),x_real(1,2),CEN(1),CEN(2),Radius,250,vel,T,L);figure(1) %绘制参考路径
plot(RefTraj_x,RefTraj_y,'k')
xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
title('Plot of x vs y - Ref. Trajectory');
legend('reference traj');
axis equal 
grid on
hold onfor i=1:1:N_lG_Test = 3;%先确定参考点和确定矩阵A,B.这里姑且认为A和B是不变的[RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(x_real(1,i),x_real(2,i),CEN(1),CEN(2),Radius,Hp,vel,T,L);u_feedForward = RefTraj_delta(G_Test);%前馈控制量
%     u_feedForward=0;RefTraj_x(G_Test)RefTraj_y(G_Test)RefTraj_theta(G_Test)Delta_x(1,1) = x_real(1,i) - RefTraj_x(G_Test);Delta_x(2,1) = x_real(2,i) - RefTraj_y(G_Test);Delta_x(3,1) = x_real(3,i) - RefTraj_theta(G_Test);if  Delta_x(3,1) > piDelta_x(3,1) = Delta_x(3,1)-2*pi;else if Delta_x(3,1) < -1*piDelta_x(3,1) = Delta_x(3,1) +2*pi;elseDelta_x(3,1) = Delta_x(3,1);end            end% 通过Backward recursion 求K    for  j=Hp:-1:2   Pk_1 = Pk;Vk_1 = Vk;     A=[1    0   -vel*sin(RefTraj_theta(j-1))*T; 0    1   vel*cos(RefTraj_theta(j-1))*T; 0    0   1;];
%         B=[cos(RefTraj_theta(j-1))*T   0; sin(RefTraj_theta(j-1))*T   0; 0            vel*T/L;]; COS2 = cos(RefTraj_delta(j-1))^2;B=[ 0 0  vel*T/(L*COS2)]'; K = (B'*Pk_1*A)/(B'*Pk_1*B+R);Ku = R/(B'*Pk_1*B+R);Kv = B'/(B'*Pk_1*B+R);Pk=A'*Pk_1*(A-B*K)+Q;   Vk=(A-B*K)'*Vk_1 - K'*R*RefTraj_delta(j-1); endu_feedBackward = -K*(Delta_x)-Ku*u_feedForward-Kv*Vk_1;  FWA(i+1,1)=u_feedForward+u_feedBackward;[x_real(1,i+1),x_real(2,i+1),x_real(3,i+1)]=Func_VehicleKineticModule_Euler(x_real(1,i),x_real(2,i),x_real(3,i),vel,FWA(i,1),FWA(i+1,1),T,L);  end%%   绘图
%        figure(1);
%     plot(RefTraj_x,RefTraj_y,'b')
%     hold on;plot(x_real(1,:),x_real(2,:),'r*');title('跟踪结果对比');xlabel('横向位置X');% axis([-1 5 -1 3]);ylabel('纵向位置Y');  end

还有4个子函数

function K=Func_Alpha_Pos(Xb,Yb,Xn,Yn)
AngleY=Yn-Yb;
AngleX=Xn-Xb;
%***求Angle*******%
if Xb==Xnif Yn>YbK=pi/2;elseK=3*pi/2;end
elseif Yb==Ynif Xn>XbK=0;elseK=pi;endelseK=atan(AngleY/AngleX);end    
end
%****修正K,使之在0~360°之间*****%if (AngleY>0&&AngleX>0)%第一象限K=K;elseif (AngleY>0&&AngleX<0)||(AngleY<0&&AngleX<0)%第二、三象限K=K+pi;else if (AngleY<0&&AngleX>0)%第四象限K=K+2*pi;  elseK=K;endend
end
function Theta=Func_Theta_Pos(Alpha)if Alpha >= 3*pi/2Theta = Alpha-3*pi/2;
elseTheta = Alpha+pi/2;
endend
function [RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(Pos_x,Pos_y,CEN_x,CEN_y,Radius,N,Velo,Ts,L)
%RefTraj为要生成的参考路径
%Pos_x,Pos_y为车辆坐标
%CEN_x,CEN_y,Radius圆心与半径
%N要生成几个参考点,即预测空间。
%Velo,Ts车速与采样时间
%L汽车的轴距
RefTraj=zeros(N,4);%生成的参考路径
Alpha_init=Func_Alpha_Pos(CEN_x,CEN_y,Pos_x,Pos_y);%首先根据车辆位置和圆心确定alphaOmega=Velo/Radius%已知车速和半径,可以求得角速度。DFWA=atan(L/Radius);for k=1:1:NAlpha(k)=Alpha_init+Omega*Ts*(k-1);RefTraj(k,1)=Radius*cos(Alpha(k))+CEN_x;%xRefTraj(k,2)=Radius*sin(Alpha(k))+CEN_y;%yRefTraj(k,3)=Func_Theta_Pos(Alpha(k));%theta  RefTraj(k,4)=DFWA;%前轮偏角,可以当做前馈量end
RefTraj_x= RefTraj(:,1);
RefTraj_y= RefTraj(:,2);
RefTraj_theta= RefTraj(:,3);
RefTraj_delta= RefTraj(:,4);end
function [X,Y,H]=Func_VehicleKineticModule_Euler(x,y,heading,vel,FWA,DFWA,T,L)
%车辆运动学模型,状态量,x,y,heading;控制量:vel=constant,FWA
%固定的步数,来求得数值解%%
%initial the status of the vehicle
num=100;
Xmc=zeros(1,num);
Ymc=zeros(1,num);
Headingmc=zeros(1,num);
Xmc(1)=x;
Ymc(1)=y;%x,y初始坐标
Headingmc(1)=heading;%航向,Headingrate=zeros(1,num);
FrontWheelAngle=zeros(1,num);t=T/num;
%%
FrontWheelAngle=linspace(FWA,DFWA,num);%前轮偏角
Headingrate=vel*tan(FrontWheelAngle)/L;
for i=2:numHeadingmc(i)=Headingmc(i-1)+Headingrate(i)*t;Xmc(i)=Xmc(i-1)+vel*t*cos(Headingmc(i-1));Ymc(i)=Ymc(i-1)+vel*t*sin(Headingmc(i-1));
end
%%X=Xmc(num);Y=Ymc(num);H=Headingmc(num);
end%% test
% [X,Y,H]=VehicleKineticModule_Euler(0,0,0,10,0,3,0.1,2.85)
%plot(X,Y,'b');

现在再看看MPC的代码实现

clc;
close all;
clear all;
%% 参考轨迹生成
N=100;%参考轨迹点数量
T=0.05;%采样时间,控制周期
% Xout=zeros(2*N,3);
% Tout=zeros(2*N,1);
Xout=zeros(N,3);
Tout=zeros(N,1);
for k=1:1:NXout(k,1)=k*T;Xout(k,2)=2;Xout(k,3)=0;Tout(k,1)=(k-1)*T;
end%% Tracking a constant reference trajectory
Nx=3;%状态量个数
Nu =2;%控制量个数
Tsim =20;%仿真时间
X0 = [0 0 pi/3];%初始状态
[Nr,Nc] = size(Xout); % Nr is the number of rows of Xout,100*3
% Mobile Robot Parameters
c = [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];
L = 1;%车辆轴距
Rr = 1;
w = 1;
% Mobile Robot variable Model
vd1 = Rr*w; % For circular trajectory,参考系统的纵向速度
vd2 = 0;%参考系统的前轮偏角%根据控制系统的维度信息,提前定义好相关矩阵并赋值
x_real=zeros(Nr,Nc);%X的真实状态
x_piao=zeros(Nr,Nc);%X的误差状态
u_real=zeros(Nr,2);%真实控制量
u_piao=zeros(Nr,2);%误差控制量
x_real(1,:)=X0;%初始状态
x_piao(1,:)=x_real(1,:)-Xout(1,:);%与预期的误差值
X_PIAO=zeros(Nr,Nx*Tsim);
XXX=zeros(Nr,Nx*Tsim);%用于保持每个时刻预测的所有状态值
q=[1 0 0;0 1 0;0 0 0.5];
Q_cell=cell(Tsim,Tsim);
for i=1:1:Tsimfor j=1:1:Tsimif i==jQ_cell{i,j}=q;else Q_cell{i,j}=zeros(Nx,Nx);end end
end
Q=cell2mat(Q_cell);%权重矩阵
R=0.1*eye(Nu*Tsim,Nu*Tsim);%权重矩阵%模型预测控制主体
for i=1:1:Nrt_d =Xout(i,3);a=[1    0   -vd1*sin(t_d)*T;0    1   vd1*cos(t_d)*T;0    0   1;];b=[cos(t_d)*T   0;sin(t_d)*T   0;0            T;];     A_cell=cell(Tsim,1);B_cell=cell(Tsim,Tsim);for j=1:1:TsimA_cell{j,1}=a^j;for k=1:1:Tsimif k<=jB_cell{j,k}=(a^(j-k))*b;elseB_cell{j,k}=zeros(Nx,Nu);endendendA=cell2mat(A_cell);B=cell2mat(B_cell);H=2*(B'*Q*B+R);f=2*B'*Q*A*x_piao(i,:)';A_cons=[];b_cons=[];lb=[-1;-1];ub=[1;1];tic[X,fval(i,1),exitflag(i,1),output(i,1)]=quadprog(H,f,A_cons,b_cons,[],[],lb,ub);%二次规划求解tocX_PIAO(i,:)=(A*x_piao(i,:)'+B*X)';if i+j<Nrfor j=1:1:TsimXXX(i,1+3*(j-1))=X_PIAO(i,1+3*(j-1))+Xout(i+j,1);XXX(i,2+3*(j-1))=X_PIAO(i,2+3*(j-1))+Xout(i+j,2);XXX(i,3+3*(j-1))=X_PIAO(i,3+3*(j-1))+Xout(i+j,3);endelsefor j=1:1:TsimXXX(i,1+3*(j-1))=X_PIAO(i,1+3*(j-1))+Xout(Nr,1);XXX(i,2+3*(j-1))=X_PIAO(i,2+3*(j-1))+Xout(Nr,2);XXX(i,3+3*(j-1))=X_PIAO(i,3+3*(j-1))+Xout(Nr,3);endendu_piao(i,1)=X(1,1);u_piao(i,2)=X(2,1);Tvec=[0:0.05:4];X00=x_real(i,:);vd11=vd1+u_piao(i,1);vd22=vd2+u_piao(i,2);XOUT=dsolve('Dx-vd11*cos(z)=0','Dy-vd11*sin(z)=0','Dz-vd22=0','x(0)=X00(1)','y(0)=X00(2)','z(0)=X00(3)');t=T; x_real(i+1,1)=eval(XOUT.x);x_real(i+1,2)=eval(XOUT.y);x_real(i+1,3)=eval(XOUT.z);if(i<Nr)x_piao(i+1,:)=x_real(i+1,:)-Xout(i+1,:);endu_real(i,1)=vd1+u_piao(i,1);u_real(i,2)=vd2+u_piao(i,2);figure(1);plot(Xout(1:Nr,1),Xout(1:Nr,2));hold on;plot(x_real(i,1),x_real(i,2),'r*');title('跟踪结果对比');xlabel('横向位置X');axis([-1 5 -1 3]);ylabel('纵向位置Y');hold on;for k=1:1:TsimX(i,k+1)=XXX(i,1+3*(k-1));Y(i,k+1)=XXX(i,2+3*(k-1));endX(i,1)=x_real(i,1);Y(i,1)=x_real(i,2);plot(X(i,:),Y(i,:),'y.')hold on;end
% figure(5)
% plot(X(2,:),Y(2,:),'b');
%% 以下为绘图部分
figure(2)
subplot(3,1,1);
plot(Tout(1:Nr),Xout(1:Nr,1),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,1),'k');
%grid on;
%title('状态量-横向坐标X对比');
xlabel('采样时间T');
ylabel('横向位置X')
subplot(3,1,2);
plot(Tout(1:Nr),Xout(1:Nr,2),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,2),'k');
%grid on;
%title('状态量-横向坐标Y对比');
xlabel('采样时间T');
ylabel('纵向位置Y')
subplot(3,1,3);
plot(Tout(1:Nr),Xout(1:Nr,3),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,3),'k');
%grid on;
hold on;
%title('状态量-\theta对比');
xlabel('采样时间T');
ylabel('\theta')figure(3)
subplot(2,1,1);
plot(Tout(1:Nr),u_real(1:Nr,1),'k');
%grid on;
%title('控制量-纵向速度v对比');
xlabel('采样时间T');
ylabel('纵向速度')
subplot(2,1,2)
plot(Tout(1:Nr),u_real(1:Nr,2),'k');
%grid on;
%title('控制量-角加速度对比');
xlabel('采样时间T');
ylabel('角加速度')figure(4)
subplot(3,1,1);
plot(Tout(1:Nr),x_piao(1:Nr,1),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(x)');
subplot(3,1,2);
plot(Tout(1:Nr),x_piao(1:Nr,2),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(y)');
subplot(3,1,3);
plot(Tout(1:Nr),x_piao(1:Nr,3),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(\theta)');

添加了一些注释,但是感觉这个代码写的不是很好。

下次看到好的MPC代码我会放上来。

这篇关于MPC模型预测控制(二)-MATLAB代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891382

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英