MPC模型预测控制(二)-MATLAB代码实现

2024-04-10 14:58

本文主要是介绍MPC模型预测控制(二)-MATLAB代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

update:MPC的QQ群

第一个群已经满500人(贫穷使我充不起鹅厂会员),这是第二个群。

群都满了。

 

https://blog.csdn.net/tingfenghanlei/article/details/85046120在这篇文章里主要讲了下MPC的原理和C++实现的一个简单例子。

这篇文章里主要写MPC的MATLAB实现。许多做控制的同学还是很喜欢用MATLAB的,可以先用MATLAB跑跑看自己的代码效果怎么样。

我看MPC的MATLAB代码实现,主要看的是《无人驾驶车辆模型预测控制》这本书,书里的代码也比较完备。这里实现的代码基本上都是这本书中的,CSDN也有下载链接,大家可以去下载观看。

在实现MPC的代码之前,书中讲了LQR的代码实现。

LQR和MPC的区别:

LQR solves an optimization,

MPC solves a constrained optimization

In practice, optimization could lead to over-voltage, ovre-current, excessive force etc. You want a motor starts very quickly? The optimizer tells you give it an infinite electric current. So you use a saturation which destroys the optimality. MPC solves an optimization without excessing the limits.

In addition, LQR can be solved offline for an LTI system. However, MPC is not a linear controller. Typically, it must be solved online at each sample time. It requires higher computational load. MPC has toolbox in MATLAB. You can use it before you learn its theory in deep.

参考链接https://www.quora.com/Whats-the-difference-between-constrained-LQR-and-MPC

function LQR_1()
%这里先从简单开始,给定一个直线车道和车辆位置偏差。
%参考轨迹的生成方法有两种:
%1.车辆在Path上投影,然后在PATH上选取一系列的点作参考点
%*现在遇到的问题是Q R的参数怎么设置。而且通用性怎么办?*%clear all;
close all;
clc;
%% 给定参数:vel = 6; % 纵向车速,单位:m/s
L=2.85;%轴距
T=0.05;% sample time, control period
% 给定圆形参考轨迹CEN=[0,0];       % 圆心Radius=20;       % 半径%% 设置参数
Hp =10;%predictive horizion, control horizon 
N_l=200;% 设置迭代次数Nx=3;%状态变量参数的个数
Nu=1;%控制变量参数的个数FWA=zeros(N_l,1);%前轮偏角
FWA(1,1)= 0; %初始状态的前轮偏角x_real=zeros(Nx,N_l);%实际状态
x_real(:,1)= [22 0 pi/2]; %x0=车辆初始状态X_init初始状态
% x_piao=zeros(N_l,Nx);%实际状态与参考轨迹的误差
% 
% u_real=zeros(N_l,Nu);%实际的控制量
% u_piao=zeros(N_l,Nu);%实际控制量与参考控制量的误差% X_PIAO=zeros(N_l,3*Hp);%通过DR估计的状态
% 
% XXX=zeros(N_l,3*Hp);%用于保持每个时刻预测的所有状态值RefTraj=zeros(3,1);
Delta_x = zeros(3,1);Q=[10 0 0; 0 10 0; 0 0 100];
R=[10];%r是对控制量误差的weighting matricePk=[1 0 0; 0 1 0; 0 0 1]; %人为给定,相当于QN
Vk=[0 0 0]'; %人为给定,相当于QN%%  算法实现u_feedBackward=0;u_feedForward=0;%*首先生成参考轨迹,画出图来作参考*%[RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(x_real(1,1),x_real(1,2),CEN(1),CEN(2),Radius,250,vel,T,L);figure(1) %绘制参考路径
plot(RefTraj_x,RefTraj_y,'k')
xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
title('Plot of x vs y - Ref. Trajectory');
legend('reference traj');
axis equal 
grid on
hold onfor i=1:1:N_lG_Test = 3;%先确定参考点和确定矩阵A,B.这里姑且认为A和B是不变的[RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(x_real(1,i),x_real(2,i),CEN(1),CEN(2),Radius,Hp,vel,T,L);u_feedForward = RefTraj_delta(G_Test);%前馈控制量
%     u_feedForward=0;RefTraj_x(G_Test)RefTraj_y(G_Test)RefTraj_theta(G_Test)Delta_x(1,1) = x_real(1,i) - RefTraj_x(G_Test);Delta_x(2,1) = x_real(2,i) - RefTraj_y(G_Test);Delta_x(3,1) = x_real(3,i) - RefTraj_theta(G_Test);if  Delta_x(3,1) > piDelta_x(3,1) = Delta_x(3,1)-2*pi;else if Delta_x(3,1) < -1*piDelta_x(3,1) = Delta_x(3,1) +2*pi;elseDelta_x(3,1) = Delta_x(3,1);end            end% 通过Backward recursion 求K    for  j=Hp:-1:2   Pk_1 = Pk;Vk_1 = Vk;     A=[1    0   -vel*sin(RefTraj_theta(j-1))*T; 0    1   vel*cos(RefTraj_theta(j-1))*T; 0    0   1;];
%         B=[cos(RefTraj_theta(j-1))*T   0; sin(RefTraj_theta(j-1))*T   0; 0            vel*T/L;]; COS2 = cos(RefTraj_delta(j-1))^2;B=[ 0 0  vel*T/(L*COS2)]'; K = (B'*Pk_1*A)/(B'*Pk_1*B+R);Ku = R/(B'*Pk_1*B+R);Kv = B'/(B'*Pk_1*B+R);Pk=A'*Pk_1*(A-B*K)+Q;   Vk=(A-B*K)'*Vk_1 - K'*R*RefTraj_delta(j-1); endu_feedBackward = -K*(Delta_x)-Ku*u_feedForward-Kv*Vk_1;  FWA(i+1,1)=u_feedForward+u_feedBackward;[x_real(1,i+1),x_real(2,i+1),x_real(3,i+1)]=Func_VehicleKineticModule_Euler(x_real(1,i),x_real(2,i),x_real(3,i),vel,FWA(i,1),FWA(i+1,1),T,L);  end%%   绘图
%        figure(1);
%     plot(RefTraj_x,RefTraj_y,'b')
%     hold on;plot(x_real(1,:),x_real(2,:),'r*');title('跟踪结果对比');xlabel('横向位置X');% axis([-1 5 -1 3]);ylabel('纵向位置Y');  end

还有4个子函数

function K=Func_Alpha_Pos(Xb,Yb,Xn,Yn)
AngleY=Yn-Yb;
AngleX=Xn-Xb;
%***求Angle*******%
if Xb==Xnif Yn>YbK=pi/2;elseK=3*pi/2;end
elseif Yb==Ynif Xn>XbK=0;elseK=pi;endelseK=atan(AngleY/AngleX);end    
end
%****修正K,使之在0~360°之间*****%if (AngleY>0&&AngleX>0)%第一象限K=K;elseif (AngleY>0&&AngleX<0)||(AngleY<0&&AngleX<0)%第二、三象限K=K+pi;else if (AngleY<0&&AngleX>0)%第四象限K=K+2*pi;  elseK=K;endend
end
function Theta=Func_Theta_Pos(Alpha)if Alpha >= 3*pi/2Theta = Alpha-3*pi/2;
elseTheta = Alpha+pi/2;
endend
function [RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(Pos_x,Pos_y,CEN_x,CEN_y,Radius,N,Velo,Ts,L)
%RefTraj为要生成的参考路径
%Pos_x,Pos_y为车辆坐标
%CEN_x,CEN_y,Radius圆心与半径
%N要生成几个参考点,即预测空间。
%Velo,Ts车速与采样时间
%L汽车的轴距
RefTraj=zeros(N,4);%生成的参考路径
Alpha_init=Func_Alpha_Pos(CEN_x,CEN_y,Pos_x,Pos_y);%首先根据车辆位置和圆心确定alphaOmega=Velo/Radius%已知车速和半径,可以求得角速度。DFWA=atan(L/Radius);for k=1:1:NAlpha(k)=Alpha_init+Omega*Ts*(k-1);RefTraj(k,1)=Radius*cos(Alpha(k))+CEN_x;%xRefTraj(k,2)=Radius*sin(Alpha(k))+CEN_y;%yRefTraj(k,3)=Func_Theta_Pos(Alpha(k));%theta  RefTraj(k,4)=DFWA;%前轮偏角,可以当做前馈量end
RefTraj_x= RefTraj(:,1);
RefTraj_y= RefTraj(:,2);
RefTraj_theta= RefTraj(:,3);
RefTraj_delta= RefTraj(:,4);end
function [X,Y,H]=Func_VehicleKineticModule_Euler(x,y,heading,vel,FWA,DFWA,T,L)
%车辆运动学模型,状态量,x,y,heading;控制量:vel=constant,FWA
%固定的步数,来求得数值解%%
%initial the status of the vehicle
num=100;
Xmc=zeros(1,num);
Ymc=zeros(1,num);
Headingmc=zeros(1,num);
Xmc(1)=x;
Ymc(1)=y;%x,y初始坐标
Headingmc(1)=heading;%航向,Headingrate=zeros(1,num);
FrontWheelAngle=zeros(1,num);t=T/num;
%%
FrontWheelAngle=linspace(FWA,DFWA,num);%前轮偏角
Headingrate=vel*tan(FrontWheelAngle)/L;
for i=2:numHeadingmc(i)=Headingmc(i-1)+Headingrate(i)*t;Xmc(i)=Xmc(i-1)+vel*t*cos(Headingmc(i-1));Ymc(i)=Ymc(i-1)+vel*t*sin(Headingmc(i-1));
end
%%X=Xmc(num);Y=Ymc(num);H=Headingmc(num);
end%% test
% [X,Y,H]=VehicleKineticModule_Euler(0,0,0,10,0,3,0.1,2.85)
%plot(X,Y,'b');

现在再看看MPC的代码实现

clc;
close all;
clear all;
%% 参考轨迹生成
N=100;%参考轨迹点数量
T=0.05;%采样时间,控制周期
% Xout=zeros(2*N,3);
% Tout=zeros(2*N,1);
Xout=zeros(N,3);
Tout=zeros(N,1);
for k=1:1:NXout(k,1)=k*T;Xout(k,2)=2;Xout(k,3)=0;Tout(k,1)=(k-1)*T;
end%% Tracking a constant reference trajectory
Nx=3;%状态量个数
Nu =2;%控制量个数
Tsim =20;%仿真时间
X0 = [0 0 pi/3];%初始状态
[Nr,Nc] = size(Xout); % Nr is the number of rows of Xout,100*3
% Mobile Robot Parameters
c = [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];
L = 1;%车辆轴距
Rr = 1;
w = 1;
% Mobile Robot variable Model
vd1 = Rr*w; % For circular trajectory,参考系统的纵向速度
vd2 = 0;%参考系统的前轮偏角%根据控制系统的维度信息,提前定义好相关矩阵并赋值
x_real=zeros(Nr,Nc);%X的真实状态
x_piao=zeros(Nr,Nc);%X的误差状态
u_real=zeros(Nr,2);%真实控制量
u_piao=zeros(Nr,2);%误差控制量
x_real(1,:)=X0;%初始状态
x_piao(1,:)=x_real(1,:)-Xout(1,:);%与预期的误差值
X_PIAO=zeros(Nr,Nx*Tsim);
XXX=zeros(Nr,Nx*Tsim);%用于保持每个时刻预测的所有状态值
q=[1 0 0;0 1 0;0 0 0.5];
Q_cell=cell(Tsim,Tsim);
for i=1:1:Tsimfor j=1:1:Tsimif i==jQ_cell{i,j}=q;else Q_cell{i,j}=zeros(Nx,Nx);end end
end
Q=cell2mat(Q_cell);%权重矩阵
R=0.1*eye(Nu*Tsim,Nu*Tsim);%权重矩阵%模型预测控制主体
for i=1:1:Nrt_d =Xout(i,3);a=[1    0   -vd1*sin(t_d)*T;0    1   vd1*cos(t_d)*T;0    0   1;];b=[cos(t_d)*T   0;sin(t_d)*T   0;0            T;];     A_cell=cell(Tsim,1);B_cell=cell(Tsim,Tsim);for j=1:1:TsimA_cell{j,1}=a^j;for k=1:1:Tsimif k<=jB_cell{j,k}=(a^(j-k))*b;elseB_cell{j,k}=zeros(Nx,Nu);endendendA=cell2mat(A_cell);B=cell2mat(B_cell);H=2*(B'*Q*B+R);f=2*B'*Q*A*x_piao(i,:)';A_cons=[];b_cons=[];lb=[-1;-1];ub=[1;1];tic[X,fval(i,1),exitflag(i,1),output(i,1)]=quadprog(H,f,A_cons,b_cons,[],[],lb,ub);%二次规划求解tocX_PIAO(i,:)=(A*x_piao(i,:)'+B*X)';if i+j<Nrfor j=1:1:TsimXXX(i,1+3*(j-1))=X_PIAO(i,1+3*(j-1))+Xout(i+j,1);XXX(i,2+3*(j-1))=X_PIAO(i,2+3*(j-1))+Xout(i+j,2);XXX(i,3+3*(j-1))=X_PIAO(i,3+3*(j-1))+Xout(i+j,3);endelsefor j=1:1:TsimXXX(i,1+3*(j-1))=X_PIAO(i,1+3*(j-1))+Xout(Nr,1);XXX(i,2+3*(j-1))=X_PIAO(i,2+3*(j-1))+Xout(Nr,2);XXX(i,3+3*(j-1))=X_PIAO(i,3+3*(j-1))+Xout(Nr,3);endendu_piao(i,1)=X(1,1);u_piao(i,2)=X(2,1);Tvec=[0:0.05:4];X00=x_real(i,:);vd11=vd1+u_piao(i,1);vd22=vd2+u_piao(i,2);XOUT=dsolve('Dx-vd11*cos(z)=0','Dy-vd11*sin(z)=0','Dz-vd22=0','x(0)=X00(1)','y(0)=X00(2)','z(0)=X00(3)');t=T; x_real(i+1,1)=eval(XOUT.x);x_real(i+1,2)=eval(XOUT.y);x_real(i+1,3)=eval(XOUT.z);if(i<Nr)x_piao(i+1,:)=x_real(i+1,:)-Xout(i+1,:);endu_real(i,1)=vd1+u_piao(i,1);u_real(i,2)=vd2+u_piao(i,2);figure(1);plot(Xout(1:Nr,1),Xout(1:Nr,2));hold on;plot(x_real(i,1),x_real(i,2),'r*');title('跟踪结果对比');xlabel('横向位置X');axis([-1 5 -1 3]);ylabel('纵向位置Y');hold on;for k=1:1:TsimX(i,k+1)=XXX(i,1+3*(k-1));Y(i,k+1)=XXX(i,2+3*(k-1));endX(i,1)=x_real(i,1);Y(i,1)=x_real(i,2);plot(X(i,:),Y(i,:),'y.')hold on;end
% figure(5)
% plot(X(2,:),Y(2,:),'b');
%% 以下为绘图部分
figure(2)
subplot(3,1,1);
plot(Tout(1:Nr),Xout(1:Nr,1),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,1),'k');
%grid on;
%title('状态量-横向坐标X对比');
xlabel('采样时间T');
ylabel('横向位置X')
subplot(3,1,2);
plot(Tout(1:Nr),Xout(1:Nr,2),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,2),'k');
%grid on;
%title('状态量-横向坐标Y对比');
xlabel('采样时间T');
ylabel('纵向位置Y')
subplot(3,1,3);
plot(Tout(1:Nr),Xout(1:Nr,3),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,3),'k');
%grid on;
hold on;
%title('状态量-\theta对比');
xlabel('采样时间T');
ylabel('\theta')figure(3)
subplot(2,1,1);
plot(Tout(1:Nr),u_real(1:Nr,1),'k');
%grid on;
%title('控制量-纵向速度v对比');
xlabel('采样时间T');
ylabel('纵向速度')
subplot(2,1,2)
plot(Tout(1:Nr),u_real(1:Nr,2),'k');
%grid on;
%title('控制量-角加速度对比');
xlabel('采样时间T');
ylabel('角加速度')figure(4)
subplot(3,1,1);
plot(Tout(1:Nr),x_piao(1:Nr,1),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(x)');
subplot(3,1,2);
plot(Tout(1:Nr),x_piao(1:Nr,2),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(y)');
subplot(3,1,3);
plot(Tout(1:Nr),x_piao(1:Nr,3),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(\theta)');

添加了一些注释,但是感觉这个代码写的不是很好。

下次看到好的MPC代码我会放上来。

这篇关于MPC模型预测控制(二)-MATLAB代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891382

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态