Ubuntu 20.04.06 PCL C++学习记录(二十一)【切记使用rm * -rf前先确认是否是对应文件夹】

本文主要是介绍Ubuntu 20.04.06 PCL C++学习记录(二十一)【切记使用rm * -rf前先确认是否是对应文件夹】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

@[TOC]PCL中点云分割模块的学习

学习背景

参考书籍:《点云库PCL从入门到精通》以及官方代码PCL官方代码链接,,PCL版本为1.10.0,CMake版本为3.16,测试点云下载地址

学习内容

根据欧几里得距离和需要保持的用户可自定义条件对点进行聚类,点云文件可从上述地址下载。

源代码及所用函数

源代码

#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/time.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/segmentation/conditional_euclidean_clustering.h>typedef pcl::PointXYZI PointTypeIO;
typedef pcl::PointXYZINormal PointTypeFull;bool enforceIntensitySimilarity (const PointTypeFull& point_a, const PointTypeFull& point_b, float /*squared_distance*/){if (std::abs (point_a.intensity - point_b.intensity) < 5.0f)return (true);elsereturn (false);
}bool enforceNormalOrIntensitySimilarity (const PointTypeFull& point_a, const PointTypeFull& point_b, float /*squared_distance*/){Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.getNormalVector3fMap (), point_b_normal = point_b.getNormalVector3fMap ();if (std::abs (point_a.intensity - point_b.intensity) < 5.0f)return (true);if (std::abs (point_a_normal.dot (point_b_normal)) > std::cos (30.0f / 180.0f * static_cast<float> (M_PI)))return (true);return (false);}boolcustomRegionGrowing (const PointTypeFull& point_a, const PointTypeFull& point_b, float squared_distance){Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.getNormalVector3fMap (), point_b_normal = point_b.getNormalVector3fMap ();if (squared_distance < 10000){if (std::abs (point_a.intensity - point_b.intensity) < 8.0f)return (true);if (std::abs (point_a_normal.dot (point_b_normal)) > std::cos (30.0f / 180.0f * static_cast<float> (M_PI)))return (true);}else{if (std::abs (point_a.intensity - point_b.intensity) < 3.0f)return (true);}return (false);}intmain (){// Data containers usedpcl::PointCloud<PointTypeIO>::Ptr cloud_in (new pcl::PointCloud<PointTypeIO>), cloud_out (new pcl::PointCloud<PointTypeIO>);pcl::PointCloud<PointTypeFull>::Ptr cloud_with_normals (new pcl::PointCloud<PointTypeFull>);pcl::IndicesClustersPtr clusters (new pcl::IndicesClusters), small_clusters (new pcl::IndicesClusters), large_clusters (new pcl::IndicesClusters);pcl::search::KdTree<PointTypeIO>::Ptr search_tree (new pcl::search::KdTree<PointTypeIO>);pcl::console::TicToc tt;// Load the input point cloudstd::cerr << "Loading...\n", tt.tic ();pcl::io::loadPCDFile ("/home/jojo/PointCloud/Statues_4.pcd", *cloud_in);std::cerr << ">> Done: " << tt.toc () << " ms, " << cloud_in->size () << " points\n";// Downsample the cloud using a Voxel Grid classstd::cerr << "Downsampling...\n", tt.tic ();pcl::VoxelGrid<PointTypeIO> vg;vg.setInputCloud (cloud_in);vg.setLeafSize (80.0, 80.0, 80.0);vg.setDownsampleAllData (true);vg.filter (*cloud_out);std::cerr << ">> Done: " << tt.toc () << " ms, " << cloud_out->size () << " points\n";// Set up a Normal Estimation class and merge data in cloud_with_normalsstd::cerr << "Computing normals...\n", tt.tic ();pcl::copyPointCloud (*cloud_out, *cloud_with_normals);pcl::NormalEstimation<PointTypeIO, PointTypeFull> ne;ne.setInputCloud (cloud_out);ne.setSearchMethod (search_tree);ne.setRadiusSearch (300.0);ne.compute (*cloud_with_normals);std::cerr << ">> Done: " << tt.toc () << " ms\n";// Set up a Conditional Euclidean Clustering classstd::cerr << "Segmenting to clusters...\n", tt.tic ();pcl::ConditionalEuclideanClustering<PointTypeFull> cec (true);cec.setInputCloud (cloud_with_normals);cec.setConditionFunction (&customRegionGrowing);cec.setClusterTolerance (500.0);cec.setMinClusterSize (cloud_with_normals->size () / 1000);cec.setMaxClusterSize (cloud_with_normals->size () / 5);cec.segment (*clusters);cec.getRemovedClusters (small_clusters, large_clusters);std::cerr << ">> Done: " << tt.toc () << " ms\n";// Using the intensity channel for lazy visualization of the outputfor (const auto& small_cluster : (*small_clusters))for (const auto& j : small_cluster.indices)(*cloud_out)[j].intensity = -2.0;for (const auto& large_cluster : (*large_clusters))for (const auto& j : large_cluster.indices)(*cloud_out)[j].intensity = +10.0;for (const auto& cluster : (*clusters)){int label = rand () % 8;for (const auto& j : cluster.indices)(*cloud_out)[j].intensity = label;}// Save the output point cloudstd::cerr << "Saving...\n", tt.tic ();pcl::io::savePCDFile ("output.pcd", *cloud_out);std::cerr << ">> Done: " << tt.toc () << " ms\n";return (0);}

CMakeLists.txt

cmake_minimum_required(VERSION 3.16 FATAL_ERROR)#指定CMake的最低版本要求为3.16
project(project)#设置项目名称
find_package(PCL 1.10 REQUIRED)#查找PCL库,要求版本为1.10或更高。
include_directories(${PCL_INCLUDE_DIRS})#将PCL库的头文件目录添加到包含路径中
link_directories(${PCL_LIBRARY_DIRS})#将PCL库的库文件目录添加到链接器搜索路径中。
add_definitions(${PCL_DEFINITIONS})#添加PCL库的编译器定义
add_executable (conditional_euclidean_clustering conditional_euclidean_clustering.cpp)
target_link_libraries (conditional_euclidean_clustering ${PCL_LIBRARIES})#将PCL库链接到可执行文件目标。

运行结果

注意:当使用 PCL 的标准 PCD 查看器打开输出点云时,按“5”将切换到强度通道可视化。 太小的簇将被涂成红色,太大的簇将被涂成蓝色,而实际的簇/感兴趣的物体将被随机着色为黄色和青色, 如果不按则都为一个颜色。
在这里插入图片描述

函数

补充内容

  • std::cout << “降采样中\n”,tt.tic();和std::cout << “降采样中\n”,tt.tic()<<std::endl;的区别
    1. std::cout << “降采样中\n”, tt.tic();
      这个语句使用了逗号运算符 ,。逗号运算符会按照从左到右的顺序依次计算其左右两侧的表达式,并返回右侧表达式的值。在这个语句中,首先会输出字符串 “降采样中\n”,然后计算 tt.tic(),但是 tt.tic() 的返回值会被丢弃,因为它没有被使用或输出。
    2. std::cout << “降采样中\n”, tt.tic() << std::endl;
      这个语句也使用了逗号运算符 ,。同样地,它会先输出字符串 “降采样中\n”,然后计算 tt.tic()。但是,这里的 tt.tic() 的返回值会被传递给 std::cout,然后再输出一个换行符 std::endl。

第二个语句不仅会输出字符串 “降采样中\n”,还会输出 tt.tic() 的返回值,并在最后添加一个换行符

这篇关于Ubuntu 20.04.06 PCL C++学习记录(二十一)【切记使用rm * -rf前先确认是否是对应文件夹】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891308

相关文章

C#中checked关键字的使用小结

《C#中checked关键字的使用小结》本文主要介绍了C#中checked关键字的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录✅ 为什么需要checked? 问题:整数溢出是“静默China编程”的(默认)checked的三种用

C#中预处理器指令的使用小结

《C#中预处理器指令的使用小结》本文主要介绍了C#中预处理器指令的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 第 1 名:#if/#else/#elif/#endif✅用途:条件编译(绝对最常用!) 典型场景: 示例

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

Mysql中RelayLog中继日志的使用

《Mysql中RelayLog中继日志的使用》MySQLRelayLog中继日志是主从复制架构中的核心组件,负责将从主库获取的Binlog事件暂存并应用到从库,本文就来详细的介绍一下RelayLog中... 目录一、什么是 Relay Log(中继日志)二、Relay Log 的工作流程三、Relay Lo

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格