论文笔记 | MathDQN: Solving Arithmetric Word Problems via Deep Reinforcement Learning

本文主要是介绍论文笔记 | MathDQN: Solving Arithmetric Word Problems via Deep Reinforcement Learning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

Lei Wang 和 Dongxiang Zhang团队在AAAI18上发表的文章,使用了DQN来解决MWP(Math Word Problem)问题。

Motivation

在将问题表达成一个表达式树的时候,有一种方法是枚举所有的操作数,组成树的叶子节点。这种方法所需的搜索空间很大,虽然有一些剪枝的算法可以运用,但仍不能满足需求。

在实践中,可以发现Deep Q-netwrok能够处理搜索空间很大的问题。比如:游戏场景。

所以本文想要用deep Q-network来解决math word problem。

MathDQN框架

在这里插入图片描述

步骤为:
  • 首先提取问题文本中的相关操作数
  • 对操作数根据表达式树的构造顺序进行排列
  • 每一个迭代,选择两个操作数,将它们的上下文相关的向量表示作为当前state
  • 将state向量输入两层的前馈神经网络,得出当前的两个操作数的最近公共祖先的操作符
  • 对于groundtruth的操作符,如果一致则给出正向反馈,否则给出负反馈。
对应强化学习的要素:
  • state:当前状态用两个操作数的上下文向量来表示
  • action:指两个操作数的最近公共祖先的操作符
  • reward:操作符正确,则给出奖励;否则惩罚。

优缺点分析

strong points:
  • 第一次使用强化学习来解决MWP问题,设计了合理地状态空间、动作空间和奖励函数。
  • motivation很好,利用了DQN解决搜索空间大的问题。
weak points:
  • 文中使用的数据集规模较小,三个数据集中都包含少于1000个题目。17年发表的文章DNS中提供的较大规模数据集Math23K已经被广泛使用,但这里没有用到。【是否能适用于大规模数据,需要根据代码进一步确定。】

这篇关于论文笔记 | MathDQN: Solving Arithmetric Word Problems via Deep Reinforcement Learning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890787

相关文章

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

基于Java实现模板填充Word

《基于Java实现模板填充Word》这篇文章主要为大家详细介绍了如何用Java实现按产品经理提供的Word模板填充数据,并以word或pdf形式导出,有需要的小伙伴可以参考一下... Java实现按模板填充wor编程d本文讲解的需求是:我们需要把数据库中的某些数据按照 产品经理提供的 word模板,把数据

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快