Adaptive Filter Learning Notes 自适应滤波学习笔记02 随机过程模型

本文主要是介绍Adaptive Filter Learning Notes 自适应滤波学习笔记02 随机过程模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是一个学习笔记系列。为督促自己看书,尽量更新。但同时也在学其他东西,也不知道能不能实现。少玩耍,多读书。

应该会慢慢改进,会慢慢补充每一个部分的笔记。

文章目录

  • Stochastic Progress and Models
    • 三个常见线性随机模型
      • 自回归模型(Autoregressive Models)
      • 滑动平均模型(Moving-Average Models)
      • 自回归滑动平均模型(Autoregressive-Moving-Average Models)
    • Wold分解定理(Wold Decomposition Theorem)
    • 选择模型的阶
      • 信息论准则(An Information-Theoretic Criterion)
      • 最小描述长度准则(Minimum Description Length Criterion)

Stochastic Progress and Models

三个常见线性随机模型

本节出现的定义高斯白噪声(white Guassian noise),自回归模型(Autoregressive Models),过程分析器(process analyzer),全零点滤波器(all-zero filter),过程产生器(process generator),全极点滤波器(all-pole filter),滑动平均模型(Moving-Average Models),自回归滑动平均模型(Autoregressive-Moving-Average Models)

高斯白噪声(white Guassian noise) E [ ν ( n ) ] = 0 , ∀ n , E [ ν ( n ) ν ( k ) ] = { σ ν 2 , k = n 0 , otherwise \mathbb{E}[\nu(n)]=0,\forall n, \mathbb{E}[\nu(n)\nu(k)]=\begin{cases} \sigma_{\nu}^2, &k=n\\ 0,&\text{otherwise} \end{cases} E[ν(n)]=0,n,E[ν(n)ν(k)]={σν2,0,k=notherwise
输入为 ν ( n ) \nu(n) ν(n),输出为 u ( n ) u(n) u(n)

输入
离散线性滤波
输出

滤波部分为 ( 模型当前输出值 ) + ( 模型之前输出值的线性组合 ) = ( 模型之前输入值及当前输入值的线性组合 ) \left(\text{模型当前输出值}\right)+\left(\text{模型之前输出值的线性组合}\right)\\ =\left(\text{模型之前输入值及当前输入值的线性组合}\right) (模型当前输出值)+(模型之前输出值的线性组合)=(模型之前输入值及当前输入值的线性组合)

自回归模型(Autoregressive Models)

u ( n ) + a 1 ∗ u ( n − 1 ) + ⋯ + a M ∗ u ( n − M ) = ν ( n ) u(n)+a_1^*u(n-1)+\dots+a_M^{*}u(n-M)=\nu(n) u(n)+a1u(n1)++aMu(nM)=ν(n)
{ a i } \{a_i\} {a

这篇关于Adaptive Filter Learning Notes 自适应滤波学习笔记02 随机过程模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890399

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO