深度学习实践(一)基于Transformer英译汉模型

2024-04-10 04:52

本文主要是介绍深度学习实践(一)基于Transformer英译汉模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文目录

  • 前述
  • 一、环境依赖
  • 二、数据准备
    • 1. 数据加载
    • 2. 构建单词表
      • 程序解析
        • (1)将列表里每个子列表的所有单词合并到一个新列表(没有子列表)中。
        • (2)Counter()-- 统计迭代对象各元素出现次数,并按次数从多到少排序
        • (3)获取出现频率最高的前 50000 个元素及其个数。
        • (4) 建立字典word_dict{ }:存放元素及其索引号
        • (5) 建立字典index_dict{ }---{ 索引号:元素 }
    • 3. 将英文、中文单词列表转为单词索引列表
    • 4. 划分batch
  • 三、模型搭建

前述

基础请查看:Transformer基础查看地址!

一、环境依赖

nltk==3.5
numpy==1.18.5
seaborn==0.11.1
matplotlib==3.3.2
psyco==1.6
zhtools==0.0.5#torch==1.12.1 安装torch时使用下面的命令
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113 -i https://pypi.tuna.tsinghua.edu.cn/simple

代码导入包 :

import copy
import math
import matplotlib.pyplot as plt
import numpy as np
import os
import seaborn as sns
import time
import torch
import torch.nn as nn
import torch.nn.functional as Ffrom collections import Counter
from langconv import Converter
from nltk import word_tokenize
from torch.autograd import Variable

二、数据准备

  数据集可以去网络上下载,下面的是train.txt文件部分内容,前面为英文,后面为繁体中文,中间以'\t'隔开。其他数据文件也相同。
这里数据集是英文和繁体中文,所以第一步我们需要将繁体中文变为简体中文。
在这里插入图片描述

转换代码如下:

def cht_to_chs(sent):
"""" zh-hans" 是一个语言代码,用于指代中文(汉语)的简体字形式。在国际化和本地化领域,语言代码用于标识特定语言或语言变体。在这里,"zh" 表示汉语(中文),"hans" 表示简体字形式。因此,"zh-hans" 表示简体中文。"""sent = Converter("zh-hans").convert(sent) sent = sent.encode("utf-8")return sent

1. 数据加载

作用:读取数据路径下的完整句子,将每个句子分割为一个一个的单词,并存到子列表中。返回含有子列表的列表,

"""参数参数path 为数据的路径,如下train_file= 'nmt/en-cn/train.txt'  # 训练集dev_file= "nmt/en-cn/dev.txt"      # 验证集load_data(train_file)
"""def load_data(self, path):"""读取英文、中文数据对每条样本分词并构建包含起始符和终止符的单词列表"""en = []    #定义英文列表cn = []    #定义中文列表with open(path, mode="r", encoding="utf-8") as f:     #只读的形式打开文件路径,文件描述符为f。for line in f.readlines():          #按行读取sent_en, sent_cn = line.strip().split("\t")  #以‘\t’进行分割,前面的赋给sent_en,后面的赋给sent_cn 。sent_en = sent_en.lower()    #将英文转换为小写。sent_cn = cht_to_chs(sent_cn)  #将繁体中文转为简体中文。"""	word_tokenize() 是 NLTK库中的一个函数,用于将文本分词成单词(token)。它可以将一个句子或文本分解成一个个单词或标点符号,用于处理英文句子"""sent_en = ["BOS"] + word_tokenize(sent_en) + ["EOS"]# 中文按字符切分sent_cn = ["BOS"] + [char for char in sent_cn] + ["EOS"]en.append(sent_en)  #将切割好的英文 存入英文列表。包含['BOS', 'i', 'love', 'you', 'EOS']cn.append(sent_cn)  #将切割好的中文 存入中文列表。return en, cn    #返回两个单词列表"""
输出列表格式如下:en = [['BOS','I', 'love', 'natural', 'language', 'processing', '.', 'EOS'] ,['BOS', 'Natural', 'language', 'processing', 'is', 'fascinating', '.', 'EOS']]
"""	            

2. 构建单词表

"""输入参数train_en, train_cn = load_data(train_file)build_dict(train_en)  这里的输入为单词列表。输入列表如下:train_en= [['BOS','I', 'love', 'natural', 'language', 'processing', '.', 'EOS'] ,['BOS', 'Natural', 'language', 'processing', 'is', 'fascinating', '.', 'EOS']]
"""
PAD = 0                             # padding占位符的索引
UNK = 1                             # 未登录词标识符的索引
def build_dict(self, sentences, max_words=5e4):"""构造分词后的列表数据构建单词-索引映射(key为单词,value为id值)"""# 统计数据集中单词词频word_count = Counter([word for sent in sentences for word in sent])# 按词频保留前max_words个单词构建词典# 添加UNK和PAD两个单词ls = word_count.most_common(int(max_words))total_words = len(ls) + 2word_dict = {word [0]: index + 2 for index, word in enumerate(ls)}word_dict['UNK'] = UNKword_dict['PAD'] = PAD# 构建id2word映射index_dict = {v: k for k, v in word_dict.items()}return word_dict, total_words, index_dict

程序解析

(1)将列表里每个子列表的所有单词合并到一个新列表(没有子列表)中。

将sentences里面每句话的每个单词组合形成一个新的列表。

sentences = [['BOS''I', 'love', 'natural', 'language', 'processing', '.', 'EOS'] ,['BOS', 'Natural', 'language', 'processing', 'is', 'fascinating', '.', 'EOS']]word_list = [word for sent in sentences for word in sent]
"""
另一种写法:word_list = []for sent in sentences:for word in sent:word_list.append(word)
"""
print(word_list )
"""输出: ['BOS', 'I', 'love', 'natural', 'language', 'processing', '.', 'EOS', 'BOS', 'Natural', 'language', 'processing', 'is', 'fascinating', '.', 'EOS']
"""
(2)Counter()-- 统计迭代对象各元素出现次数,并按次数从多到少排序
from collections import Counter
#Python 中的一个内置数据结构
# 定义一个列表
word_list = ['BOS', 'I', 'love', 'natural', 'language', 'processing', '.', 'EOS', 'BOS', 'Natural', 'language', 'processing', 'is', 'fascinating', '.', 'EOS']
# 使用 Counter 统计列表中各元素的出现次数
word_count = Counter(word_list)
print(word_count )"""输出: Counter({'BOS': 2, 'language': 2, 'processing': 2, '.': 2, 'EOS': 2, 'I': 1, 'love': 1, 'natural': 1, 'Natural': 1, 'is': 1, 'fascinating': 1})
"""
(3)获取出现频率最高的前 50000 个元素及其个数。
from collections import Counterword_count = Counter({'BOS': 2, 'language': 2, 'processing': 2, '.': 2, 'EOS': 2, 'I': 1, 'love': 1, 'natural': 1, 'Natural': 1, 'is': 1, 'fascinating': 1})ls = word_count.most_common(int(5e4))#返回列表中频率最高的元素和它们的计数,按照计数从高到低排序。频率最高的前 50000 个元素。
print(ls)
"""
输出:[('BOS', 2), ('language', 2), ('processing', 2), ('.', 2), ('EOS', 2), ('I', 1), ('love', 1), ('natural', 1), ('Natural', 1), ('is', 1), ('fascinating', 1)]"""
(4) 建立字典word_dict{ }:存放元素及其索引号

enumerate(可迭代元素),返回的第一个值为索引,第二个值为元素。

ls = [('BOS', 2), ('language', 2), ('processing', 2), ('.', 2), ('EOS', 2), ('I', 1), ('love', 1), ('natural', 1), ('Natural', 1), ('is', 1), ('fascinating', 1)]word_dict = {word [0]: index + 2 for index, word in enumerate(ls)}"""另一种写法:word_dict = {}for index, word  in enumerate(ls):word_dict[ word[0] ] = index + 2print(word_dict)
"""
print(word_dict)  #存放元素及其索引号
"""输出: {'BOS': 2, 'language': 3, 'processing': 4, '.': 5, 'EOS': 6, 'I': 7, 'love': 8, 'natural': 9, 'Natural': 10, 'is': 11, 'fascinating': 12}
"""word_dict['UNK'] = 1
word_dict['PAD'] = 0
print(word_dict)
"""输出:{'BOS': 2, 'language': 3, 'processing': 4, '.': 5, 'EOS': 6, 'I': 7, 'love': 8, 'natural': 9, 'Natural': 10, 'is': 11, 'fascinating': 12, 'UNK': 1, 'PAD': 0}
"""
(5) 建立字典index_dict{ }—{ 索引号:元素 }
word_dict= {'BOS': 2, 'language': 3, 'processing': 4, '.': 5, 'EOS': 6, 'I': 7, 'love': 8, 'natural': 9, 'Natural': 10, 'is': 11, 'fascinating': 12, 'UNK': 1, 'PAD': 0}index_dict = {v: k for k, v in word_dict.items()}
print(index_dict)"""输出:{2: 'BOS', 3: 'language', 4: 'processing', 5: '.', 6: 'EOS', 7: 'I', 8: 'love', 9: 'natural', 10: 'Natural', 11: 'is', 12: 'fascinating', 1: 'UNK', 0: 'PAD'}
"""

3. 将英文、中文单词列表转为单词索引列表

  def word2id(self, en, cn, en_dict, cn_dict, sort=True):"""将英文、中文单词列表转为单词索引列表`sort=True`表示以英文语句长度排序,以便按批次填充时,同批次语句填充尽量少"""length = len(en)# 单词映射为索引out_en_ids = [[en_dict.get(word, UNK) for word in sent] for sent in en]out_cn_ids = [[cn_dict.get(word, UNK) for word in sent] for sent in cn]# 按照语句长度排序def len_argsort(seq):"""传入一系列语句数据(分好词的列表形式),按照语句长度排序后,返回排序后原来各语句在数据中的索引下标"""return sorted(range(len(seq)), key=lambda x: len(seq[x]))# 按相同顺序对中文、英文样本排序if sort:# 以英文语句长度排序sorted_index = len_argsort(out_en_ids)out_en_ids = [out_en_ids[idx] for idx in sorted_index]out_cn_ids = [out_cn_ids[idx] for idx in sorted_index]return out_en_ids, out_cn_ids

4. 划分batch

    def split_batch(self, en, cn, batch_size, shuffle=True):"""划分批次`shuffle=True`表示对各批次顺序随机打乱"""# 每隔batch_size取一个索引作为后续batch的起始索引idx_list = np.arange(0, len(en), batch_size)# 起始索引随机打乱if shuffle:np.random.shuffle(idx_list)# 存放所有批次的语句索引batch_indexs = []for idx in idx_list:"""形如[array([4, 5, 6, 7]), array([0, 1, 2, 3]), array([8, 9, 10, 11]),...]"""# 起始索引最大的批次可能发生越界,要限定其索引batch_indexs.append(np.arange(idx, min(idx + batch_size, len(en))))# 构建批次列表batches = []for batch_index in batch_indexs:# 按当前批次的样本索引采样batch_en = [en[index] for index in batch_index]batch_cn = [cn[index] for index in batch_index]# 对当前批次中所有语句填充、对齐长度# 维度为:batch_size * 当前批次中语句的最大长度batch_cn = seq_padding(batch_cn)batch_en = seq_padding(batch_en)# 将当前批次添加到批次列表# Batch类用于实现注意力掩码batches.append(Batch(batch_en, batch_cn))return batches

三、模型搭建

这篇关于深度学习实践(一)基于Transformer英译汉模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890109

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss