深度学习实践(一)基于Transformer英译汉模型

2024-04-10 04:52

本文主要是介绍深度学习实践(一)基于Transformer英译汉模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文目录

  • 前述
  • 一、环境依赖
  • 二、数据准备
    • 1. 数据加载
    • 2. 构建单词表
      • 程序解析
        • (1)将列表里每个子列表的所有单词合并到一个新列表(没有子列表)中。
        • (2)Counter()-- 统计迭代对象各元素出现次数,并按次数从多到少排序
        • (3)获取出现频率最高的前 50000 个元素及其个数。
        • (4) 建立字典word_dict{ }:存放元素及其索引号
        • (5) 建立字典index_dict{ }---{ 索引号:元素 }
    • 3. 将英文、中文单词列表转为单词索引列表
    • 4. 划分batch
  • 三、模型搭建

前述

基础请查看:Transformer基础查看地址!

一、环境依赖

nltk==3.5
numpy==1.18.5
seaborn==0.11.1
matplotlib==3.3.2
psyco==1.6
zhtools==0.0.5#torch==1.12.1 安装torch时使用下面的命令
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113 -i https://pypi.tuna.tsinghua.edu.cn/simple

代码导入包 :

import copy
import math
import matplotlib.pyplot as plt
import numpy as np
import os
import seaborn as sns
import time
import torch
import torch.nn as nn
import torch.nn.functional as Ffrom collections import Counter
from langconv import Converter
from nltk import word_tokenize
from torch.autograd import Variable

二、数据准备

  数据集可以去网络上下载,下面的是train.txt文件部分内容,前面为英文,后面为繁体中文,中间以'\t'隔开。其他数据文件也相同。
这里数据集是英文和繁体中文,所以第一步我们需要将繁体中文变为简体中文。
在这里插入图片描述

转换代码如下:

def cht_to_chs(sent):
"""" zh-hans" 是一个语言代码,用于指代中文(汉语)的简体字形式。在国际化和本地化领域,语言代码用于标识特定语言或语言变体。在这里,"zh" 表示汉语(中文),"hans" 表示简体字形式。因此,"zh-hans" 表示简体中文。"""sent = Converter("zh-hans").convert(sent) sent = sent.encode("utf-8")return sent

1. 数据加载

作用:读取数据路径下的完整句子,将每个句子分割为一个一个的单词,并存到子列表中。返回含有子列表的列表,

"""参数参数path 为数据的路径,如下train_file= 'nmt/en-cn/train.txt'  # 训练集dev_file= "nmt/en-cn/dev.txt"      # 验证集load_data(train_file)
"""def load_data(self, path):"""读取英文、中文数据对每条样本分词并构建包含起始符和终止符的单词列表"""en = []    #定义英文列表cn = []    #定义中文列表with open(path, mode="r", encoding="utf-8") as f:     #只读的形式打开文件路径,文件描述符为f。for line in f.readlines():          #按行读取sent_en, sent_cn = line.strip().split("\t")  #以‘\t’进行分割,前面的赋给sent_en,后面的赋给sent_cn 。sent_en = sent_en.lower()    #将英文转换为小写。sent_cn = cht_to_chs(sent_cn)  #将繁体中文转为简体中文。"""	word_tokenize() 是 NLTK库中的一个函数,用于将文本分词成单词(token)。它可以将一个句子或文本分解成一个个单词或标点符号,用于处理英文句子"""sent_en = ["BOS"] + word_tokenize(sent_en) + ["EOS"]# 中文按字符切分sent_cn = ["BOS"] + [char for char in sent_cn] + ["EOS"]en.append(sent_en)  #将切割好的英文 存入英文列表。包含['BOS', 'i', 'love', 'you', 'EOS']cn.append(sent_cn)  #将切割好的中文 存入中文列表。return en, cn    #返回两个单词列表"""
输出列表格式如下:en = [['BOS','I', 'love', 'natural', 'language', 'processing', '.', 'EOS'] ,['BOS', 'Natural', 'language', 'processing', 'is', 'fascinating', '.', 'EOS']]
"""	            

2. 构建单词表

"""输入参数train_en, train_cn = load_data(train_file)build_dict(train_en)  这里的输入为单词列表。输入列表如下:train_en= [['BOS','I', 'love', 'natural', 'language', 'processing', '.', 'EOS'] ,['BOS', 'Natural', 'language', 'processing', 'is', 'fascinating', '.', 'EOS']]
"""
PAD = 0                             # padding占位符的索引
UNK = 1                             # 未登录词标识符的索引
def build_dict(self, sentences, max_words=5e4):"""构造分词后的列表数据构建单词-索引映射(key为单词,value为id值)"""# 统计数据集中单词词频word_count = Counter([word for sent in sentences for word in sent])# 按词频保留前max_words个单词构建词典# 添加UNK和PAD两个单词ls = word_count.most_common(int(max_words))total_words = len(ls) + 2word_dict = {word [0]: index + 2 for index, word in enumerate(ls)}word_dict['UNK'] = UNKword_dict['PAD'] = PAD# 构建id2word映射index_dict = {v: k for k, v in word_dict.items()}return word_dict, total_words, index_dict

程序解析

(1)将列表里每个子列表的所有单词合并到一个新列表(没有子列表)中。

将sentences里面每句话的每个单词组合形成一个新的列表。

sentences = [['BOS''I', 'love', 'natural', 'language', 'processing', '.', 'EOS'] ,['BOS', 'Natural', 'language', 'processing', 'is', 'fascinating', '.', 'EOS']]word_list = [word for sent in sentences for word in sent]
"""
另一种写法:word_list = []for sent in sentences:for word in sent:word_list.append(word)
"""
print(word_list )
"""输出: ['BOS', 'I', 'love', 'natural', 'language', 'processing', '.', 'EOS', 'BOS', 'Natural', 'language', 'processing', 'is', 'fascinating', '.', 'EOS']
"""
(2)Counter()-- 统计迭代对象各元素出现次数,并按次数从多到少排序
from collections import Counter
#Python 中的一个内置数据结构
# 定义一个列表
word_list = ['BOS', 'I', 'love', 'natural', 'language', 'processing', '.', 'EOS', 'BOS', 'Natural', 'language', 'processing', 'is', 'fascinating', '.', 'EOS']
# 使用 Counter 统计列表中各元素的出现次数
word_count = Counter(word_list)
print(word_count )"""输出: Counter({'BOS': 2, 'language': 2, 'processing': 2, '.': 2, 'EOS': 2, 'I': 1, 'love': 1, 'natural': 1, 'Natural': 1, 'is': 1, 'fascinating': 1})
"""
(3)获取出现频率最高的前 50000 个元素及其个数。
from collections import Counterword_count = Counter({'BOS': 2, 'language': 2, 'processing': 2, '.': 2, 'EOS': 2, 'I': 1, 'love': 1, 'natural': 1, 'Natural': 1, 'is': 1, 'fascinating': 1})ls = word_count.most_common(int(5e4))#返回列表中频率最高的元素和它们的计数,按照计数从高到低排序。频率最高的前 50000 个元素。
print(ls)
"""
输出:[('BOS', 2), ('language', 2), ('processing', 2), ('.', 2), ('EOS', 2), ('I', 1), ('love', 1), ('natural', 1), ('Natural', 1), ('is', 1), ('fascinating', 1)]"""
(4) 建立字典word_dict{ }:存放元素及其索引号

enumerate(可迭代元素),返回的第一个值为索引,第二个值为元素。

ls = [('BOS', 2), ('language', 2), ('processing', 2), ('.', 2), ('EOS', 2), ('I', 1), ('love', 1), ('natural', 1), ('Natural', 1), ('is', 1), ('fascinating', 1)]word_dict = {word [0]: index + 2 for index, word in enumerate(ls)}"""另一种写法:word_dict = {}for index, word  in enumerate(ls):word_dict[ word[0] ] = index + 2print(word_dict)
"""
print(word_dict)  #存放元素及其索引号
"""输出: {'BOS': 2, 'language': 3, 'processing': 4, '.': 5, 'EOS': 6, 'I': 7, 'love': 8, 'natural': 9, 'Natural': 10, 'is': 11, 'fascinating': 12}
"""word_dict['UNK'] = 1
word_dict['PAD'] = 0
print(word_dict)
"""输出:{'BOS': 2, 'language': 3, 'processing': 4, '.': 5, 'EOS': 6, 'I': 7, 'love': 8, 'natural': 9, 'Natural': 10, 'is': 11, 'fascinating': 12, 'UNK': 1, 'PAD': 0}
"""
(5) 建立字典index_dict{ }—{ 索引号:元素 }
word_dict= {'BOS': 2, 'language': 3, 'processing': 4, '.': 5, 'EOS': 6, 'I': 7, 'love': 8, 'natural': 9, 'Natural': 10, 'is': 11, 'fascinating': 12, 'UNK': 1, 'PAD': 0}index_dict = {v: k for k, v in word_dict.items()}
print(index_dict)"""输出:{2: 'BOS', 3: 'language', 4: 'processing', 5: '.', 6: 'EOS', 7: 'I', 8: 'love', 9: 'natural', 10: 'Natural', 11: 'is', 12: 'fascinating', 1: 'UNK', 0: 'PAD'}
"""

3. 将英文、中文单词列表转为单词索引列表

  def word2id(self, en, cn, en_dict, cn_dict, sort=True):"""将英文、中文单词列表转为单词索引列表`sort=True`表示以英文语句长度排序,以便按批次填充时,同批次语句填充尽量少"""length = len(en)# 单词映射为索引out_en_ids = [[en_dict.get(word, UNK) for word in sent] for sent in en]out_cn_ids = [[cn_dict.get(word, UNK) for word in sent] for sent in cn]# 按照语句长度排序def len_argsort(seq):"""传入一系列语句数据(分好词的列表形式),按照语句长度排序后,返回排序后原来各语句在数据中的索引下标"""return sorted(range(len(seq)), key=lambda x: len(seq[x]))# 按相同顺序对中文、英文样本排序if sort:# 以英文语句长度排序sorted_index = len_argsort(out_en_ids)out_en_ids = [out_en_ids[idx] for idx in sorted_index]out_cn_ids = [out_cn_ids[idx] for idx in sorted_index]return out_en_ids, out_cn_ids

4. 划分batch

    def split_batch(self, en, cn, batch_size, shuffle=True):"""划分批次`shuffle=True`表示对各批次顺序随机打乱"""# 每隔batch_size取一个索引作为后续batch的起始索引idx_list = np.arange(0, len(en), batch_size)# 起始索引随机打乱if shuffle:np.random.shuffle(idx_list)# 存放所有批次的语句索引batch_indexs = []for idx in idx_list:"""形如[array([4, 5, 6, 7]), array([0, 1, 2, 3]), array([8, 9, 10, 11]),...]"""# 起始索引最大的批次可能发生越界,要限定其索引batch_indexs.append(np.arange(idx, min(idx + batch_size, len(en))))# 构建批次列表batches = []for batch_index in batch_indexs:# 按当前批次的样本索引采样batch_en = [en[index] for index in batch_index]batch_cn = [cn[index] for index in batch_index]# 对当前批次中所有语句填充、对齐长度# 维度为:batch_size * 当前批次中语句的最大长度batch_cn = seq_padding(batch_cn)batch_en = seq_padding(batch_en)# 将当前批次添加到批次列表# Batch类用于实现注意力掩码batches.append(Batch(batch_en, batch_cn))return batches

三、模型搭建

这篇关于深度学习实践(一)基于Transformer英译汉模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890109

相关文章

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应