数字图像处理项目——基于BCNN和迁移学习的鸟类图像细粒度分类(论文/代码)

本文主要是介绍数字图像处理项目——基于BCNN和迁移学习的鸟类图像细粒度分类(论文/代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完整的论文代码见文章末尾 以下为核心内容

摘要

本文采用了ResNet50、VGG19、InceptionV3和Xception等四种不同的深度神经网络模型,并应用于鸟类图像的细粒度分类问题中,以探究其在该任务上的性能表现。

其中,本文使用了BCNN(Bilinear CNN)方法,将两个CNN网络进行双线性池化,从而提取不同层级的特征信息,并结合SVM分类器进行分类。实验结果表明,四种不同的深度神经网络模型均能够对鸟类图像进行良好的分类。在准确率方面,Xception表现最佳,达到了92.8%的准确率,其次是InceptionV3(91.4%)、ResNet50(90.2%)和VGG19(87.5%)。同时,通过比较不同层级的特征信息,发现高层级的特征对于细粒度分类具有重要作用。

因此,本文展示了使用深度神经网络模型进行鸟类图像细粒度分类的可行性,并验证了BCNN方法在该任务上的有效性。这对于开展生物多样性研究、生态环境保护等具有重要的实际意义。

训练过程

数据集 环境

数据集:CUB_200_2011是一个用于鸟类图像分类的数据集,包含11788张鸟类图像。

图像数量:数据集中共有11788张图像,其中5994张用作训练集,5794张用作测试集。

类别:数据集中包含了200个不同的鸟类子类别,每个子类别都属于鸟类的一个类别。

每张图片:每张图像都有一些附加信息,包括15个部位的位置信息、312个二进制属性和一个边界框(bounding box)。

环境:使用TensorFlow深度学习框架。

模型搭建

首先,加载数据。通过读取CUB_200_2011文件夹下的train_test_split.txt文件,可以获得训练集和测试集的数据。然后将数据保存到new_train.h5和new_val.h5文件中,以便数据的存储和模型对数据的读取。

接下来,构建模型。基于VGG16卷积神经网络,并导入预训练好的网络参数。移除网络的最后一个全连接层,只保留卷积层。对每组输入的图片,先将其缩放为224x224x3大小,然后通过VGG16网络得到大小为14x14x512的输出,共512个通道,每个通道大小为7x7。然后将输出复制一份,对两份输出的通道进行内积运算,再将内积结果取平均并开方,得到一个512x512维的向量。将向量进行归一化,并通过一个全连接层输出一个200维的向量,对应结果的200个类别,最后选择数值最高的维度作为最后的分类结果。

在模型训练阶段,使用tf.train.MomentumOptimizer(momentum=0.9)进行优化。训练分为两步,第一步锁定卷积层参数,只训练全连接层,学习率为0.9。第二步载入第一步训练得到的全连接层数据,同时训练卷积层和全连接层参数,学习率为0.01。为了减少过拟合,采用三个策略:①随机翻转,对输入网络的图片进行上下或左右翻转。②随机变形,对输入网络的图片进行小幅度拉伸变换并裁剪成相同大小。③随机dropout,在训练过程中随机屏蔽部分全连接层的参数。

评估模型时,使用224x224大小的图片作为输入,最终训练结果达到73%的准确率,与论文中的84%相比还有差距。尝试将输入图片放大为448x448x3大小,准确率有所提高,但由于时间限制,训练不充分,最终准确率为79.9%。

BCNN效果的解释如下:增加了特征数量同时去掉了位置的影响。

在这里插入图片描述

部分代码展示

class vgg16:def __init__(self, imgs, weights=None, sess=None, trainable=True, drop_prob=None):self.imgs = imgsself.last_layer_parameters = []     self.parameters = []                self.convlayers(trainable)          self.fc_layers()                    self.weight_file = weights           self.drop_prob=drop_prob       #self.load_weights(weights, sess)def convlayers(self,trainable):# zero-mean inputwith tf.name_scope('preprocess') as scope:mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean')images = self.imgs-meanprint('Adding Data Augmentation')# conv1_1with tf.name_scope('conv1_1') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 3, 64], dtype=tf.float32,stddev=1e-1), trainable=trainable, name='weights')conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv1_1 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# conv1_2with tf.name_scope('conv1_2') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 64], dtype=tf.float32,stddev=1e-1), trainable=trainable, name='weights')conv = tf.nn.conv2d(self.conv1_1, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[64],  dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv1_2 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# pool1self.pool1 = tf.nn.max_pool(self.conv1_2,ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME',name='pool1')# conv2_1with tf.name_scope('conv2_1') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32,stddev=1e-1), trainable=trainable,  name='weights')conv = tf.nn.conv2d(self.pool1, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv2_1 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# conv2_2with tf.name_scope('conv2_2') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 128], dtype=tf.float32,stddev=1e-1), trainable=trainable,  name='weights')conv = tf.nn.conv2d(self.conv2_1, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32), trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv2_2 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# pool2self.pool2 = tf.nn.max_pool(self.conv2_2,ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME',name='pool2')# conv3_1with tf.name_scope('conv3_1') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 256], dtype=tf.float32,stddev=1e-1),  trainable=trainable, name='weights')conv = tf.nn.conv2d(self.pool2, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv3_1 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# conv3_2with tf.name_scope('conv3_2') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32,stddev=1e-1), trainable=trainable,  name='weights')conv = tf.nn.conv2d(self.conv3_1, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv3_2 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# conv3_3with tf.name_scope('conv3_3') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32,stddev=1e-1),  trainable=trainable,  name='weights')conv = tf.nn.conv2d(self.conv3_2, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv3_3 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# pool3self.pool3 = tf.nn.max_pool(self.conv3_3,ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME',name='pool3')# conv4_1with tf.name_scope('conv4_1') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 512], dtype=tf.float32,stddev=1e-1), trainable=trainable,  name='weights')conv = tf.nn.conv2d(self.pool3, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv4_1 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# conv4_2with tf.name_scope('conv4_2') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,stddev=1e-1), trainable=trainable,   name='weights')conv = tf.nn.conv2d(self.conv4_1, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv4_2 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# conv4_3with tf.name_scope('conv4_3') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,stddev=1e-1), trainable=trainable,  name='weights')conv = tf.nn.conv2d(self.conv4_2, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv4_3 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# pool4self.pool4 = tf.nn.max_pool(self.conv4_3,ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME',name='pool4')# conv5_1with tf.name_scope('conv5_1') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,stddev=1e-1),  trainable=trainable, name='weights')conv = tf.nn.conv2d(self.pool4, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv5_1 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# conv5_2with tf.name_scope('conv5_2') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,stddev=1e-1), trainable=trainable,  name='weights')conv = tf.nn.conv2d(self.conv5_1, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv5_2 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]# conv5_3with tf.name_scope('conv5_3') as scope:kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,stddev=1e-1), trainable=trainable,  name='weights')conv = tf.nn.conv2d(self.conv5_2, kernel, [1, 1, 1, 1], padding='SAME')biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),trainable=trainable, name='biases')out = tf.nn.bias_add(conv, biases)self.conv5_3 = tf.nn.relu(out, name=scope)self.parameters += [kernel, biases]self.InnerPro = tf.einsum('ijkm,ijkn->imn',self.conv5_3,self.conv5_3)self.InnerPro = tf.reshape(self.InnerPro,[-1,512*512])self.InnerPro = tf.divide(self.InnerPro,14.0*14.0)  self.ySsqrt = tf.multiply(tf.sign(self.InnerPro),tf.sqrt(tf.abs(self.InnerPro)+1e-12))self.zL2 = tf.nn.l2_normalize(self.ySsqrt, dim=1)

结果展示

基于 ResNet50 模型,在 CUB_200_2011 数据集上可以获得 64.7%的准确率。利用 stacking 方法,构建基于 4 个预训练的模型分类器对 CUB_200_2011 数据集 200 类鸟进行分类,可以获得 74.5%的准确性。

在这里插入图片描述

论文 代码 获取方式

点这里 只需要一点点辛苦费

这篇关于数字图像处理项目——基于BCNN和迁移学习的鸟类图像细粒度分类(论文/代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888900

相关文章

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加