【算法统治世界】动态规划 个人笔记总结

2024-04-09 15:04

本文主要是介绍【算法统治世界】动态规划 个人笔记总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 🎉🎉欢迎光临🎉🎉

🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀

🌟特别推荐给大家我的最新专栏《数据结构与算法:初学者入门指南》📘📘

希望能和大家一起学习!共同进步!

这是苏泽的个人主页可以看到我其他的内容哦👇👇

努力的苏泽icon-default.png?t=N7T8http://suzee.blog.csdn.net

这段时间刷了几十道dp感觉人都要刷傻了 光刷题不行 还是要思考和总结 这篇纯当个人笔记

目录

动态规划的本质

动态规划其实都能归结为有限状态自动机和有向无环图

动态规划如何破局?

使用的条件

如何做?

设计状态

确定状态转移方程

确定初始状态

动态规划的几大类 +例题讲解

1. 背包问题(Knapsack Problem)

例题:0-1背包问题

2. 最长公共子序列(Longest Common Subsequence, LCS)问题

例题:最长公共子序列

3. 最大子序列和问题(Maximum Subarray Problem)

例题:最大子序列和

4. 硬币找零问题(Coin Change Problem)

例题:硬币找零

5. 矩阵链乘法问题(Matrix Chain Multiplication Problem)

例题:矩阵链乘法

坑点

容易忽略“动态”

错在把一开始的那个a[1]就当做了接龙子序列的最长序列             但实则并不一定  或者说  错在没有理解“最少”的含义


动态规划的本质

动态规划其实都能归结为有限状态自动机和有向无环图

动态规划可以被视为一种有限状态自动机,其中每个状态代表了问题的一个子集,状态之间的转移代表了子问题之间的关联。在有向无环图(Directed Acyclic Graph,简称DAG)中,每个节点代表一个状态,而边则代表了状态之间的转移关系。通过这种方式,动态规划将问题转化为在一个DAG上寻找最优路径的问题。

动态规划如何破局?

动态规划的关键在于如何设计状态和状态转移方程,以及如何确定初始状态。以下是动态规划的一般步骤:

使用的条件

在应用动态规划之前,我们需要确保问题满足以下条件:

  1. 最优化原理:问题能够在其子问题的基础上构造出最优解。
  2. 重叠子问题:问题可以被分解为相互重叠的子问题,且子问题的解可以被重复使用。
  3. 有限状态数:状态的数量是有限的,且满足状态数*状态转移数<10^6的条件,以保证算法的可行性。

如何做?

设计状态

设计状态是动态规划中最为关键的一步。状态应该能够唯一地表示问题的某个阶段,同时包含所有必要的信息以决定下一步的行动。状态的设计需要根据具体问题的特点来进行,常见的状态表示方法包括:

  • 位置:在序列问题中,可以用位置来表示状态。
  • 剩余元素:在涉及选择的问题中,可以用剩余可选元素的数量来表示状态。
  • 部分结果:在需要构造结果的问题中,可以用已经得到的部分结果来表示状态。

确定状态转移方程

状态转移方程描述了状态之间的转移关系,它定义了如何从一个或多个状态得到新的状态。状态转移方程的设计需要满足最优化原理,确保能够从子问题的最优解得到原问题的最优解。 常见的状态转移方程类型包括:

  • 相加或相乘:当问题涉及到数值的累加或累乘时。
  • 选择:当问题需要在多个选项中选择一个最优的选项时。
  • 条件转移:当状态转移依赖于某些条件或属性时。

确定初始状态

初始状态是动态规划的起点,它通常代表了问题规模最小的情况下的状态。确定初始状态需要根据问题的具体背景和定义来进行。

动态规划的几大类 +例题讲解

1. 背包问题(Knapsack Problem)

背包问题是一种典型的组合优化问题,通常描述为有一个可以装载重量为W的背包和一组物品,每个物品有自己的重量和价值,目标是选择物品的组合,使得背包中物品的总重量不超过W,且总价值最大。

例题:0-1背包问题

描述:给定n个物品,每个物品有自己的重量w[i]和价值v[i],以及一个最大承重W的背包。求解如何选择物品放入背包,使得背包中物品的总价值最大。

解题思路:定义dp[i][j]为前i个物品中,能够装入容量为j的背包的最大价值。状态转移方程为:

 

dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])

其中,dp[i-1][j]表示不选择第i个物品,而dp[i-1][j-w[i]] + v[i]表示选择第i个物品。

2. 最长公共子序列(Longest Common Subsequence, LCS)问题

LCS问题是一种经典的字符串匹配问题,通常描述为有两个字符串,求解这两个字符串的最长公共子序列的长度。

例题:最长公共子序列

描述:给定两个字符串s1s2,求解它们的最长公共子序列。

解题思路:定义dp[i][j]s1的前i个字符和s2的前j个字符的最长公共子序列的长度。状态转移方程为:

 

if s1[i-1] == s2[j-1] dp[i][j] = dp[i-1][j-1] + 1 else dp[i][j] = max(dp[i-1][j], dp[i][j-1])

其中,相等的情况表示找到了一个公共字符,不相等的情况则取两个方向的最大值。

3. 最大子序列和问题(Maximum Subarray Problem)

最大子序列和问题是一种数组优化问题,通常描述为给定一个整数数组,找到一个连续子数组,使得其和最大。

例题:最大子序列和

描述:给定一个整数数组nums,返回其中最大子序列的和。

解题思路:定义tempSum为当前子数组的和,maxSum为当前找到的最大子序列和。遍历数组,对于每个元素,更新tempSummaxSum

 

if tempSum < 0 tempSum = nums[i] else tempSum += nums[i] if tempSum > maxSum maxSum = tempSum

这种方法的时间复杂度为O(n)。

4. 硬币找零问题(Coin Change Problem)

硬币找零问题是一种货币找零问题,通常描述为给定不同面额的硬币和一个总金额,求解凑成总金额所需的最少硬币个数。

例题:硬币找零

描述:给定不同面额的硬币coins和一个总金额amount,返回凑成总金额所需的最少硬币个数。

解题思路:定义dp[i]为组合成金额i所需的最少硬币个数。状态转移方程为:

 

dp[i] = min(dp[i], dp[i-c] + 1),对于所有c属于coins

其中,dp[i-c] + 1表示使用面额为c的硬币凑成金额i。

5. 矩阵链乘法问题(Matrix Chain Multiplication Problem)

矩阵链乘法问题是一种动态规划在矩阵乘法中的应用问题,通常描述为给定一系列矩阵,求解将它们乘在一起的最小计算成本。

例题:矩阵链乘法

描述:给定一系列矩阵的维度p[1...n],其中p[i]表示第i个矩阵的行数和列数,求解按照哪种顺序乘这些矩阵,使得计算成本最小。

解题思路:定义dp[i][j]为计算矩阵链p[i...j]的最小成本。状态转移方程为:

 

dp[i][j] = min{dp[k][j] + dp[i][k-1] + p[i]*p[k]*p[j]》,对于所有i ≤ k < j

其中,dp[k][j]dp[i][k-1]表示分别计算矩阵链p[i...k]p[k+1...j]的成本,而p[i]*p[k]*p[j]是这两个链相乘时的计算成本。

坑点

容易忽略“动态”

把一个线性的状态作为“固定点” 一直延展 

就像这道 接龙数列:P9242 [蓝桥杯 2023 省 B] 接龙数列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

我一开始的错误

public class MyWrong {public static void main(String[] args) {Scanner in=new Scanner(System.in);int N=in.nextInt();long[] a=new long[N+1];long length =0;for (int i = 1; i <=N ; i++) {a[i]=in.nextInt();length++;}long ans=0;int now=getHead(a[1]);for (int i = 1; i <=N ; i++) {//错在把一开始的那个a[1]就当做了接龙子序列的最长序列// 但实则并不一定  或者说  错在没有理解“最少”的含义if (now==getHead(a[i])){ans++;now=(int)a[i]%10;}}System.out.println(length-ans);}static public int getHead(long l){while (l>=10){l/=10;}return (int)l;}
}

错在把一开始的那个a[1]就当做了接龙子序列的最长序列
             但实则并不一定  或者说  错在没有理解“最少”的含义

这篇关于【算法统治世界】动态规划 个人笔记总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888477

相关文章

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

Rust格式化输出方式总结

《Rust格式化输出方式总结》Rust提供了强大的格式化输出功能,通过std::fmt模块和相关的宏来实现,主要的输出宏包括println!和format!,它们支持多种格式化占位符,如{}、{:?}... 目录Rust格式化输出方式基本的格式化输出格式化占位符Format 特性总结Rust格式化输出方式

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Nginx实现动态封禁IP的步骤指南

《Nginx实现动态封禁IP的步骤指南》在日常的生产环境中,网站可能会遭遇恶意请求、DDoS攻击或其他有害的访问行为,为了应对这些情况,动态封禁IP是一项十分重要的安全策略,本篇博客将介绍如何通过NG... 目录1、简述2、实现方式3、使用 fail2ban 动态封禁3.1 安装 fail2ban3.2 配

Vue3中的动态组件详解

《Vue3中的动态组件详解》本文介绍了Vue3中的动态组件,通过`component:is=动态组件名或组件对象/component`来实现根据条件动态渲染不同的组件,此外,还提到了使用`markRa... 目录vue3动态组件动态组件的基本使用第一种写法第二种写法性能优化解决方法总结Vue3动态组件动态

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo