NLP学习06_评估语言模型smoothing

2024-04-09 12:48

本文主要是介绍NLP学习06_评估语言模型smoothing,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

估计语言模型的概率

Unigram

首先统计语料库中所有的单词个数,然后统计每个单词出现的概率,
计算整句的概率
但是这种LM中,如果一个句子中的单词在语料库中没有出现,那么这个词的概率为0,这就导致整个句子概率为0
这显然是不合适的,用到一个平滑操作,使得虽然概率很小,但是不让它为0
在这里插入图片描述

Bigram

除了第一个单词的概率要通过Unigram计算,其他后边都是条件概率,要先在语料库找到条件词出现的个数
然后看这个条件词后跟目标词的个数,统计出概率相乘
在这里插入图片描述

N-gram

在这里插入图片描述
由上可知,这种N-gram的语言模型总是会出现某一个单词或者单词序列没有而导致整个句子的概率为0 的情况

评估语言模型

在一个任务上进行模型评估,必须将整个系统实现,然后才能计算准确率,这个过程是很耗时的
在这里插入图片描述
所以考虑先对模型进行评估,然后在用到任务上,
在任务外进行评估,具有公平性,而且可以跟很多模型比较

Perplexity:用来评估模型

在这里插入图片描述
在一个已经训练好的LM中
计算P,然后计算logP,求和,再平均,得到的结果就是x,把x代到公式perplexity = 2^-x
得到perplexity
在这里插入图片描述
不同应用场景使用的评估方法不同
在这里插入图片描述
在上边的测试结果中,Trigram的perplexity最小,所以模型最好
N-gram,N越大,模型越复杂, 越倾向于过拟合

平滑smoothing

在这里插入图片描述
由于某一个概率为0,导致整个句子的概率为0,这样导致不同语法的句子表现不出区别,所以要使用平滑的技术

平滑分为不同的方法

在这里插入图片描述
MLE:最大似然估计

add-one smoothing

也叫拉普拉斯平滑项
之前我们计算的基于前一个词的概率是最大似然估计,可能会出现概率为0,
但是平滑处理就是要给他加一个很小的概率
分子上加1,分母上加V,V即词典的大小(排除重复的单词)
在这里插入图片描述
在这里插入图片描述
之所以在分母位置加V,目的是所有的可能项平滑操作后的概率之和为1

add-K smoothing

K=1时就是add-one
这个K的值可以自己去调试,也可以通过训练得到
在这里插入图片描述
K的选择,可以通过尝试来确定,也可以通过优化的方法确定
在这里插入图片描述
比如我们在训练集已经得到LM,也就是知道词的概率,然后用到验证集上,就可以得到perplexity关于f(k)的函数
因为perplexity是越小,模型越好,所以我们找perplexity最小时的K,就是我们想要的K

平滑方法三:Interpolation

问题:当使用Trigram LM时,由于in the 没有在训练集中出现,所以导致两个条件概率都是0,但是根据实际经验,在训练集中,kitchen出现的概率是大于arboretum的,那么条件概率也应该有相同的判断。而且也不能保证在以后的语料库不会出现in the这个词
为解决这一问题,提出interpolation
在使用Trigram LM时,要同时去考虑Unigram和Bigram中的出现的频次
在这里插入图片描述
在这里插入图片描述
综合考虑LM ,给Unigram,Bigram,Trigram进行一个加权,三个都要考虑到
但是要保证权重和为1

平滑方法四:good-turning soomthing

在这里插入图片描述
Nc :表示出现c次的单词个数
在这里插入图片描述
在这里插入图片描述
下表前两列表示统计一个词典库中单词数量从0-出现20次的单词个数,
第三列是根据good-turning来计算的一个单词出现的概率
第四列是在实际的测试集中统计的单词出现概率,会发现使用good-turning推测的概率和实际概率很接近。
说明这种平滑方法的实用性
在这里插入图片描述
这种方法存在一个问题:在计算出现c次单词再出现的概率时,依赖于于出现c+1次单词的概率,但是如果没有后一项或者说后一项出现c+1次单词的个数是0,那么前一项计算结果概率就成了0.
所以这里我们会使用线性回归的方式确定一条平滑的曲线,这样那些出现N个单词的个数也就有一个值来对应。
在这里插入图片描述

这篇关于NLP学习06_评估语言模型smoothing的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888191

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st

Go语言中最便捷的http请求包resty的使用详解

《Go语言中最便捷的http请求包resty的使用详解》go语言虽然自身就有net/http包,但是说实话用起来没那么好用,resty包是go语言中一个非常受欢迎的http请求处理包,下面我们一起来学... 目录安装一、一个简单的get二、带查询参数三、设置请求头、body四、设置表单数据五、处理响应六、超

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

C语言中的浮点数存储详解

《C语言中的浮点数存储详解》:本文主要介绍C语言中的浮点数存储详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、首先明确一个概念2、接下来,讲解C语言中浮点型数存储的规则2.1、可以将上述公式分为两部分来看2.2、问:十进制小数0.5该如何存储?2.3 浮点