kinect 学习笔记二(深度图像的利用--抠取用户躯体)

2024-04-09 12:18

本文主要是介绍kinect 学习笔记二(深度图像的利用--抠取用户躯体),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天主要把深度数据和骨骼还有视频数据同步起来。算是上一次的三个的组合吧。期间遇到点白痴的问题整治了一下午:带ID的数据的ID是否准确。而且差点把自己的质疑给发到博客上来,竟然是自己代码的错误。伤心伤心。。。


直接把代码贴出来吧,也许有人觉得贴代码没水平,嗨,给自己留个小版本说不定以后还用得着,而且自信自己代码写的还算是规范,方便后来人嘛。再有一点,那个getTheContour函数画蛇添足了,实际直接利用深度数据的ID就可以抠出任务的区域。


先上实验结果:这是实时图像


然后是深度图像、骨骼图像和抠出的人体区域


这是代码,希望可以帮助到大家,当然,如果有错误欢迎指正:

#include <iostream>
#include <fstream>
#include  "math.h"
#include "Windows.h"    
#include "MSR_NuiApi.h"    
#include "cv.h"    
#include "highgui.h" using namespace std;bool tracked[NUI_SKELETON_COUNT]={FALSE};
CvPoint skeletonPoint[NUI_SKELETON_COUNT][NUI_SKELETON_POSITION_COUNT]={cvPoint(0,0)};
CvPoint colorPoint[NUI_SKELETON_COUNT][NUI_SKELETON_POSITION_COUNT]={cvPoint(0,0)};void getColorImage(HANDLE &colorEvent, HANDLE &colorStreamHandle, IplImage *colorImage);
void getDepthImage(HANDLE &depthEvent, HANDLE &depthStreamHandle, IplImage *depthImage);
void getSkeletonImage(HANDLE &skeletonEvent, IplImage *skeletonImage, IplImage *colorImage, IplImage *depthImage);
void drawSkeleton(IplImage *image, CvPoint pointSet[], int witchone);
void getTheContour(IplImage *image, int whichone, IplImage *mask);//得到各个人物的轮廓int main()
{IplImage *colorImage = cvCreateImage(cvSize(640, 480), 8, 3);IplImage *depthImage = cvCreateImage(cvSize(320, 240), 8, 3);IplImage *skeletonImage = cvCreateImage(cvSize(320, 240), 8, 3);IplImage *mask = cvCreateImage(cvSize(320, 240), 8, 3);HANDLE colorEvent = CreateEvent( NULL, TRUE, FALSE, NULL );HANDLE depthEvent = CreateEvent( NULL, TRUE, FALSE, NULL );HANDLE skeletonEvent = CreateEvent( NULL, TRUE, FALSE, NULL );HANDLE colorStreamHandle = NULL;HANDLE depthStreamHandle = NULL;HRESULT hr = NuiInitialize(NUI_INITIALIZE_FLAG_USES_COLOR | NUI_INITIALIZE_FLAG_USES_DEPTH_AND_PLAYER_INDEX | NUI_INITIALIZE_FLAG_USES_SKELETON);  if( hr != S_OK )  {  cout<<"NuiInitialize failed"<<endl;  return hr;  }hr = NuiImageStreamOpen(NUI_IMAGE_TYPE_COLOR, NUI_IMAGE_RESOLUTION_640x480, NULL, 4, colorEvent, &colorStreamHandle);if( hr != S_OK )  {  cout<<"Open the color Stream failed"<<endl;NuiShutdown();return hr;  }hr = NuiImageStreamOpen(NUI_IMAGE_TYPE_DEPTH_AND_PLAYER_INDEX, NUI_IMAGE_RESOLUTION_320x240, NULL, 2, depthEvent, &depthStreamHandle);if( hr != S_OK )  {  cout<<"Open the depth Stream failed"<<endl;NuiShutdown();return hr;  }hr = NuiSkeletonTrackingEnable( skeletonEvent, 0 );//打开骨骼跟踪事件  if( hr != S_OK )  {  cout << "NuiSkeletonTrackingEnable failed" << endl;  NuiShutdown();return hr;  }//HANDLE hEvents[3];//int nEventIdx;//hEvents[0] = colorEvent;//hEvents[1] = depthEvent;//hEvents[2] = skeletonEvent;int a=0;while (1){//刚开始想用WaitForMultipleObjects,但是怎么调都是值显示视频,深度很少显示,骨骼直接不显示。//自己理解不深入,只能临时用WaitForSingleObject这样了。//nEventIdx = WaitForMultipleObjects(sizeof(hEvents)/sizeof(hEvents[0]), hEvents, FALSE, 10);cout << nEventIdx << endl;//switch(nEventIdx)//{//case 0://	//if(WaitForSingleObject(colorEvent, 0)==0)//	getColorImage(colorEvent, colorStreamHandle, colorImage);//	break;//case 1://	//if(WaitForSingleObject(depthEvent, 0)==0)//	getDepthImage(depthEvent, depthStreamHandle, depthImage);//	break;//case 2://	//if(WaitForSingleObject(skeletonEvent, 0)==0)//	getSkeletonImage(skeletonEvent, skeletonImage);//	break;//}if(WaitForSingleObject(colorEvent, 0)==0)getColorImage(colorEvent, colorStreamHandle, colorImage);if(WaitForSingleObject(depthEvent, 0)==0)getDepthImage(depthEvent, depthStreamHandle, depthImage);if(WaitForSingleObject(skeletonEvent, INFINITE)==0)//这里使用INFINITE是为了避免没有激活skeletonEvent而跳过此代码出现colorimage频闪的现象getSkeletonImage(skeletonEvent, skeletonImage, colorImage, depthImage);for (int i=0; i<6; i++){if(tracked[i] == TRUE){cvZero(mask);getTheContour(depthImage, i, mask);tracked[i] = FALSE;break;}}cvShowImage("mask", mask);cvShowImage("colorImage", colorImage);cvShowImage("depthImage", depthImage);cvShowImage("skeletonImage", skeletonImage);if(cvWaitKey(20)==27){cvReleaseImage(&colorImage);cvReleaseImage(&depthImage);cvReleaseImage(&skeletonImage);break;}}NuiShutdown();return 0;
}void getColorImage(HANDLE &colorEvent, HANDLE &colorStreamHandle, IplImage *colorImage)
{const NUI_IMAGE_FRAME *colorFrame = NULL;NuiImageStreamGetNextFrame(colorStreamHandle, 0, &colorFrame);NuiImageBuffer *pTexture = colorFrame->pFrameTexture;  KINECT_LOCKED_RECT LockedRect;pTexture->LockRect(0, &LockedRect, NULL, 0);  if( LockedRect.Pitch != 0 )  {  //cvZero(colorImage);for (int i=0; i<480; i++)  {  uchar* ptr = (uchar*)(colorImage->imageData+i*colorImage->widthStep);  BYTE * pBuffer = (BYTE*)(LockedRect.pBits)+i*LockedRect.Pitch;//每个字节代表一个颜色信息,直接使用BYTE  for (int j=0; j<640; j++)  {  ptr[3*j] = pBuffer[4*j];//内部数据是4个字节,0-1-2是BGR,第4个现在未使用  ptr[3*j+1] = pBuffer[4*j+1];  ptr[3*j+2] = pBuffer[4*j+2];  }  }  //cvShowImage("colorImage", colorImage);//显示图像//cvWaitKey(1);}  else  {  cout<<"捕捉视频帧时发生错误"<<endl;  }  NuiImageStreamReleaseFrame( colorStreamHandle, colorFrame );  
}void getDepthImage(HANDLE &depthEvent, HANDLE &depthStreamHandle, IplImage *depthImage)
{const NUI_IMAGE_FRAME *depthFrame = NULL;NuiImageStreamGetNextFrame(depthStreamHandle, 0, &depthFrame);NuiImageBuffer *pTexture = depthFrame->pFrameTexture;  KINECT_LOCKED_RECT LockedRect;pTexture->LockRect(0, &LockedRect, NULL, 0);  RGBQUAD q;//q.rgbBlue = q.rgbGreen = q.rgbRed = 0;//cvZero(depthImage);if( LockedRect.Pitch != 0 ){for (int i=0; i<240; i++){uchar *ptr = (uchar*)(depthImage->imageData+i*depthImage->widthStep);BYTE *buffer = (BYTE*)(LockedRect.pBits)+i*LockedRect.Pitch;USHORT *bufferRun = (USHORT*)buffer;for (int j=0; j<320; j++){int player = bufferRun[j]&7;int data = (bufferRun[j]&0xfff8) >> 3;uchar imageData = 255-(uchar)(256*data/0x0fff);q.rgbBlue = q.rgbGreen = q.rgbRed = 0;switch(player){case 0:  q.rgbRed = imageData / 2;  q.rgbBlue = imageData / 2;  q.rgbGreen = imageData / 2;  break;  case 1:  q.rgbRed = imageData;  break;  case 2:  q.rgbGreen = imageData;  break;  case 3:  q.rgbRed = imageData / 4;  q.rgbGreen = q.rgbRed*4;  //这里利用乘的方法,而不用原来的方法可以避免不整除的情况q.rgbBlue = q.rgbRed*4;  //可以在后面的getTheContour()中配合使用,避免遗漏一些情况break;  case 4:  q.rgbBlue = imageData / 4; q.rgbRed = q.rgbBlue*4;  q.rgbGreen = q.rgbBlue*4;  break;  case 5:  q.rgbGreen = imageData / 4; q.rgbRed = q.rgbGreen*4;  q.rgbBlue = q.rgbGreen*4;  break;  case 6:  q.rgbRed = imageData / 2;  q.rgbGreen = imageData / 2;  q.rgbBlue = q.rgbGreen*2;  break;  case 7:  q.rgbRed = 255 - ( imageData / 2 );  q.rgbGreen = 255 - ( imageData / 2 );  q.rgbBlue = 255 - ( imageData / 2 );}ptr[3*j] = q.rgbBlue;ptr[3*j+1] = q.rgbGreen;ptr[3*j+2] = q.rgbRed;}}//cvShowImage("depthImage", depthImage);//cvWaitKey(1);}else{cout << "捕捉深度图像出现错误" << endl;}NuiImageStreamReleaseFrame(depthStreamHandle, depthFrame);}void getSkeletonImage(HANDLE &skeletonEvent, IplImage *skeletonImage, IplImage *colorImage, IplImage *depthImage)
{/*两者效果竟然不一样。奇怪NUI_SKELETON_FRAME *skeletonFrame = NULL;NUI_SKELETON_FRAME skeletonFrame;*/NUI_SKELETON_FRAME skeletonFrame;bool bFoundSkeleton = false; if(NuiSkeletonGetNextFrame( 0, &skeletonFrame ) == S_OK )  {  for( int i = 0 ; i < NUI_SKELETON_COUNT ; i++ )  {  if( skeletonFrame.SkeletonData[i].eTrackingState == NUI_SKELETON_TRACKED ){  bFoundSkeleton = true;  //cout << "ok" << endl;break;}  }  }else{cout << "没有找到合适的骨骼帧" << endl;return; }if( !bFoundSkeleton )  {  return; }  NuiTransformSmooth(&skeletonFrame,NULL);//平滑骨骼帧,消除抖动  cvZero(skeletonImage);  for( int i = 0 ; i < NUI_SKELETON_COUNT ; i++ )  {  if( skeletonFrame.SkeletonData[i].eTrackingState == NUI_SKELETON_TRACKED &&  skeletonFrame.SkeletonData[i].eSkeletonPositionTrackingState[NUI_SKELETON_POSITION_SHOULDER_CENTER] != NUI_SKELETON_POSITION_NOT_TRACKED)  {  float fx, fy;  for (int j = 0; j < NUI_SKELETON_POSITION_COUNT; j++)//所有的坐标转化为深度图的坐标  {  NuiTransformSkeletonToDepthImageF(skeletonFrame.SkeletonData[i].SkeletonPositions[j], &fx, &fy );  skeletonPoint[i][j].x = (int)(fx*320+0.5f);  skeletonPoint[i][j].y = (int)(fy*240+0.5f);  }  for (int j=0; j<NUI_SKELETON_POSITION_COUNT ; j++)  {  if (skeletonFrame.SkeletonData[i].eSkeletonPositionTrackingState[j] != NUI_SKELETON_POSITION_NOT_TRACKED)//跟踪点一用有三种状态:1没有被跟踪到,2跟踪到,3根据跟踪到的估计到  {  LONG colorx, colory;NuiImageGetColorPixelCoordinatesFromDepthPixel(NUI_IMAGE_RESOLUTION_640x480, 0, skeletonPoint[i][j].x, skeletonPoint[i][j].y, 0,&colorx, &colory);colorPoint[i][j].x = int(colorx);colorPoint[i][j].y = int(colory);//存储坐标点cvCircle(colorImage, colorPoint[i][j], 4, cvScalar(0, 255, 255), -1, 8, 0);//cvCircle(depthImage, skeletonPoint[i][j], 3, cvScalar(0, 255, 255), -1, 8, 0);cvCircle(skeletonImage, skeletonPoint[i][j], 3, cvScalar(0, 255, 255), -1, 8, 0);tracked[i] = TRUE;}}drawSkeleton(colorImage, colorPoint[i], i);//drawSkeleton(depthImage, skeletonPoint[i], i);drawSkeleton(skeletonImage, skeletonPoint[i], i);}}  //cvShowImage("skeletonImage", skeletonImage);  //cvShowImage("skeletsdfonImage", colorImage);  //cvWaitKey(1);  
}void drawSkeleton(IplImage *image, CvPoint pointSet[], int witchone)
{CvScalar color;switch(witchone)//跟踪不同的人显示不同的颜色{case 0:color = cvScalar(255);break;case 1:color = cvScalar(0,255);break;case 2:color = cvScalar(0, 0, 255);break;case 3:color = cvScalar(255, 255, 0);break;case 4:color = cvScalar(255, 0, 255);break;case 5:color = cvScalar(0, 255, 255);break;}if((pointSet[NUI_SKELETON_POSITION_HEAD].x!=0 || pointSet[NUI_SKELETON_POSITION_HEAD].y!=0) &&(pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].x!=0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_HEAD], pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER], color, 2);if((pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].x!=0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].y!=0) &&(pointSet[NUI_SKELETON_POSITION_SPINE].x!=0 || pointSet[NUI_SKELETON_POSITION_SPINE].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER], pointSet[NUI_SKELETON_POSITION_SPINE], color, 2);if((pointSet[NUI_SKELETON_POSITION_SPINE].x!=0 || pointSet[NUI_SKELETON_POSITION_SPINE].y!=0) &&(pointSet[NUI_SKELETON_POSITION_HIP_CENTER].x!=0 || pointSet[NUI_SKELETON_POSITION_HIP_CENTER].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_SPINE], pointSet[NUI_SKELETON_POSITION_HIP_CENTER], color, 2);//左上肢if((pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].x!=0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].y!=0) &&(pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER], pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT], color, 2);if((pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT], pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT], color, 2);if((pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_WRIST_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_WRIST_LEFT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT], pointSet[NUI_SKELETON_POSITION_WRIST_LEFT], color, 2);if((pointSet[NUI_SKELETON_POSITION_WRIST_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_WRIST_LEFT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_HAND_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_HAND_LEFT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_WRIST_LEFT], pointSet[NUI_SKELETON_POSITION_HAND_LEFT], color, 2);//右上肢if((pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].x!=0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].y!=0) &&(pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER], pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT], color, 2);if((pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT], pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT], color, 2);if((pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT], pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT], color, 2);if((pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_HAND_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_HAND_RIGHT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT], pointSet[NUI_SKELETON_POSITION_HAND_RIGHT], color, 2);//左下肢if((pointSet[NUI_SKELETON_POSITION_HIP_CENTER].x!=0 || pointSet[NUI_SKELETON_POSITION_HIP_CENTER].y!=0) &&(pointSet[NUI_SKELETON_POSITION_HIP_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_HIP_LEFT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_HIP_CENTER], pointSet[NUI_SKELETON_POSITION_HIP_LEFT], color, 2);if((pointSet[NUI_SKELETON_POSITION_HIP_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_HIP_LEFT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_KNEE_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_KNEE_LEFT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_HIP_LEFT], pointSet[NUI_SKELETON_POSITION_KNEE_LEFT], color, 2);if((pointSet[NUI_SKELETON_POSITION_KNEE_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_KNEE_LEFT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_KNEE_LEFT], pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT], color, 2);if((pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_FOOT_LEFT].x!=0 || pointSet[NUI_SKELETON_POSITION_FOOT_LEFT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT], pointSet[NUI_SKELETON_POSITION_FOOT_LEFT], color, 2);//右下肢if((pointSet[NUI_SKELETON_POSITION_HIP_CENTER].x!=0 || pointSet[NUI_SKELETON_POSITION_HIP_CENTER].y!=0) &&(pointSet[NUI_SKELETON_POSITION_HIP_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_HIP_RIGHT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_HIP_CENTER], pointSet[NUI_SKELETON_POSITION_HIP_RIGHT], color, 2);if((pointSet[NUI_SKELETON_POSITION_HIP_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_HIP_RIGHT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_HIP_RIGHT], pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT],color, 2);if((pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT], pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT], color, 2);if((pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT].y!=0) &&(pointSet[NUI_SKELETON_POSITION_FOOT_RIGHT].x!=0 || pointSet[NUI_SKELETON_POSITION_FOOT_RIGHT].y!=0))cvLine(image, pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT], pointSet[NUI_SKELETON_POSITION_FOOT_RIGHT], color, 2);
}void getTheContour(IplImage *image, int whichone, IplImage *mask)//根据给定的深度数据的关系(在getDepthImage()中的)确定不同的跟踪目标
{for (int i=0; i<240; i++){uchar *ptr = (uchar*)(image->imageData+i*image->widthStep);uchar *ptrmask = (uchar*)(mask->imageData+i*mask->widthStep);for (int j=0; j<320; j++){if (ptr[3*j]==0 && ptr[3*j+1]==0 && ptr[3*j+2]==0)//都为0的时候予以忽略{ptrmask[3*j]=ptrmask[3*j+1]=ptrmask[3*j+2]=0;}else if(ptr[3*j]==0 && ptr[3*j+1]==0 && ptr[3*j+2]!=0)//ID为1的时候,显示绿色{ptrmask[3*j] = 0;ptrmask[3*j+1] = 255;ptrmask[3*j+2] = 0;}else if (ptr[3*j]==0 && ptr[3*j+1]!=0 && ptr[3*j+2]==0)//ID为2的时候,显示红色{ptrmask[3*j] = 0;ptrmask[3*j+1] = 0;ptrmask[3*j+2] = 255;}else if (ptr[3*j]==ptr[3*j+1] && ptr[3*j]==4*ptr[3*j+2])//ID为3的时候{ptrmask[3*j] = 255;ptrmask[3*j+1] = 255;ptrmask[3*j+2] = 0;}else if (4*ptr[3*j]==ptr[3*j+1] && ptr[3*j+1]==ptr[3*j+2])//ID为4的时候{ptrmask[3*j] = 255;ptrmask[3*j+1] = 0;ptrmask[3*j+2] = 255;}else if (ptr[3*j]==4*ptr[3*j+1] && ptr[3*j]==ptr[3*j+2])//ID为5的时候{ptrmask[3*j] = 0;ptrmask[3*j+1] = 255;ptrmask[3*j+2] = 255;}else if (ptr[3*j]==2*ptr[3*j+1] && ptr[3*j+1]==ptr[3*j+2])//ID为6的时候{ptrmask[3*j] = 255;ptrmask[3*j+1] = 255;ptrmask[3*j+2] = 255;}else if (ptr[3*j]==ptr[3*j+1] && ptr[3*j]==ptr[3*j+2])//ID为7的时候或者ID为0的时候,显示蓝色{ptrmask[3*j] = 255;ptrmask[3*j+1] = 0;ptrmask[3*j+2] = 0;}else{cout <<"如果输出这段代码,说明有遗漏的情况,请查询getTheContour函数" << endl;}}}
}


这篇关于kinect 学习笔记二(深度图像的利用--抠取用户躯体)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888127

相关文章

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

mysql删除无用用户的方法实现

《mysql删除无用用户的方法实现》本文主要介绍了mysql删除无用用户的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 1、删除不用的账户(1) 查看当前已存在账户mysql> select user,host,pa

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像