一个行列式求导

2024-04-09 01:58
文章标签 求导 行列式

本文主要是介绍一个行列式求导,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一个行列式求导公式

d ∣ A ∣ d t = ∣ A ∣ t r ( A − 1 ∗ d A d t ) ,   A ∈ R n × n \frac{d|A|}{dt} = |A|tr(A^{-1}*\frac{dA}{dt}),\ A\in R^{n \times n} dtdA=Atr(A1dtdA), ARn×n

证明如下

首先我们有
∣ A ( a i j + ϵ ) ∣ − ∣ A ( a i j ) ∣ = ϵ A i j d ∣ A ∣ d a i j = A i j \begin{aligned} |A(a_{ij}+\epsilon)|-|A(a_{ij})| &= \epsilon A_{ij} \\ \\ \frac{d|A|}{da_{ij}} &= A_{ij} \end{aligned} A(aij+ϵ)A(aij)daijd

这篇关于一个行列式求导的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/886921

相关文章

【高等代数笔记】(18)N阶行列式

2. N阶行列式 2.12 行列式按k行(列)展开 【拉普拉斯定理】 n n n阶矩阵 A = ( a i j ) \boldsymbol{A}=(a_{ij}) A=(aij​),取定第 i 1 , i 2 , . . . , i k i_{1},i_{2},...,i_{k} i1​,i2​,...,ik​行(其中 i 1 < i 2 < . . . < i k i_{1}<i_{2}<.

线性代数行列式概念的引进

1 二阶行列式: 求这个方程组的解。 我们一般是用高斯消元法解这个方程组的。 为了记忆,我们引进记号(其实行列式刚开始,就是为了方便记忆): 二阶行列式: 用高斯消元法求得的解可以表示为如下: 2 三阶行列式: 1) 六项的代数和。恰好是1,2,3这三个数的全排列的个数。 2) 每项都是3个元素的乘积,分析这3个元素的下标:他们取自不同行不

《高等代数》行(列)和相等行列式

说明:此文章用于本人复习巩固,如果也能帮助到大家那就更加有意义了。 注:1)行(列)和相等行列式的求解方法是将其于行都加到第一行(列),然后再提取第一行                 (列),使得第一行(列)变成“1”,再用第一行(列)将行列式化为三角形行列式。

《高等代数》范德蒙德行列式的应用

说明:此文章用于本人复习巩固,如果也能帮助到大家那就更加有意义了。 注:范德蒙德行列式的简单应用及其变形。 范德蒙德行列式的计算公式: 注:(1)用大下标减去小下标。        (2)i>j,不是i≥j 例一:(公式的简单应用) 例二:(缺失的范德蒙德行列式一) 注:1)可以看到,所要求的行列式与范德蒙德行列式相比缺失了次数为三次方的一行。利用行列

PyTorch 的自动求导与计算图

在深度学习中,模型的训练过程本质上是通过梯度下降算法不断优化损失函数。为了高效地计算梯度,PyTorch 提供了强大的自动求导机制,这一机制依赖于“计算图”(Computational Graph)的概念。 1. 什么是计算图? 计算图是一种有向无环图(DAG),其中每个节点表示操作或变量,边表示数据的流动。简单来说,计算图是一个将复杂计算分解为一系列基本操作的图表。每个节点(通常称为“张量”

《高等代数》两条线行列式

说明:此文章用于本人复习巩固,如果也能帮助到大家那就更加有意义了。 注:两条线行列式的固定做法为按照第一列展开。

《高等代数》“爪”字型行列式

说明:此文章用于本人复习巩固,如果也能帮助到大家那就更加有意义了。 注:1)“爪”字型行列式的第一种求解方法是利用初等行(列)变换,将第一列除第一行的第                 一个数以外的其它数都化为0,得到三角行列式,然后进行求解。        2)“爪”字型行列式的第二种求解方法是“加边法”,其目的也是最终将行列式化为三角行列式           进行求解。

行列式的计算(矩阵外面加个绝对值)

1、写在前面 我表示很难过,曾经线代,矩阵学的也不算太差,可惜太久没用,导致现在连最基本的行列式都不会了。以后还是要多用,多用,多用,重要的事情说三遍。 2、行列式的计算准则 定义:n阶行列式 等于所有取自不同行不同列的n个元素的乘积 的代数和,这里是1,2,...,n的一个排列,每一项都按下列规则带有符号:当是偶排列时带有正号,当是奇排列时带有负号。这一定义可写成 这里表

矩阵求导术(上)

矩阵求导术(上) - 知乎 这篇博客的转载备份,希望大家去原博主那看,那边清晰明确一点。 需要一点高数和线代的知识基本就能看懂,原博主讲的是真好。

【解析几何笔记】6.三阶行列式

6. 三阶行列式 6.1 三阶行列式的定义 对三阶方阵 ( a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ) \begin{pmatrix} a_{1} & a_{2} & a_{3}\\ b_{1} & b_{2} & b_{3}\\ c_{1} & c_{2} &c_{3} \end{pmatrix} ​a1​b1​c1​​a2​b2​c2​​a3​b3​c