线性代数行列式概念的引进

2024-09-05 06:08

本文主要是介绍线性代数行列式概念的引进,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 二阶行列式:


求这个方程组的解。

我们一般是用高斯消元法解这个方程组的。


为了记忆,我们引进记号(其实行列式刚开始,就是为了方便记忆):

二阶行列式:


用高斯消元法求得的解可以表示为如下:



2 三阶行列式:



1) 六项的代数和。恰好是1,2,3这三个数的全排列的个数。

2) 每项都是3个元素的乘积,分析这3个元素的下标:他们取自不同行不同列。



这篇关于线性代数行列式概念的引进的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138165

相关文章

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Java Instrumentation从概念到基本用法详解

《JavaInstrumentation从概念到基本用法详解》JavaInstrumentation是java.lang.instrument包提供的API,允许开发者在类被JVM加载时对其进行修改... 目录一、什么是 Java Instrumentation主要用途二、核心概念1. Java Agent

Kotlin 协程之Channel的概念和基本使用详解

《Kotlin协程之Channel的概念和基本使用详解》文章介绍协程在复杂场景中使用Channel进行数据传递与控制,涵盖创建参数、缓冲策略、操作方式及异常处理,适用于持续数据流、多协程协作等,需注... 目录前言launch / async 适合的场景Channel 的概念和基本使用概念Channel 的

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

MySQL 事务的概念及ACID属性和使用详解

《MySQL事务的概念及ACID属性和使用详解》MySQL通过多线程实现存储工作,因此在并发访问场景中,事务确保了数据操作的一致性和可靠性,下面通过本文给大家介绍MySQL事务的概念及ACID属性和... 目录一、什么是事务二、事务的属性及使用2.1 事务的 ACID 属性2.2 为什么存在事务2.3 事务

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个