FPN网络

2024-04-09 01:28
文章标签 网络 fpn

本文主要是介绍FPN网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FPN(Feature Pyramid Network)是一种用于目标检测和语义分割等计算机视觉任务的网络结构。它旨在解决不同尺度下的特征信息不足的问题,提高模型对小目标和远距离目标的检测能力。在目标检测任务中,由于目标的尺度和形状各异,同一个目标可能在不同尺度下具有不同的外观。因此,单一尺度下的特征可能无法充分捕捉到不同尺度目标的特征信息,从而影响检测的准确性和鲁棒性。

FPN主要解决的问题包括:

1. **多尺度信息融合:** FPN通过构建特征金字塔,将来自不同尺度的特征信息进行融合,从而获取更全面、更丰富的多尺度特征表示。

2. **解决小目标检测困难:** 对于小目标,由于其尺寸较小,常常会在高层特征中失去信息,导致难以准确检测。FPN通过自顶向下的特征传播过程,将高层特征与底层特征相结合,提供更丰富的语义信息,有助于提高对小目标的检测能力。

3. **减少计算成本:** FPN在特征金字塔的构建中使用了共享的特征提取网络,避免了重复计算,从而降低了计算成本。

综上所述,FPN通过构建特征金字塔并结合自顶向下的特征传播机制,有效地解决了目标检测中的多尺度问题,提高了模型对不同尺度目标的检测性能。

FPN的主要思想是利用多尺度特征金字塔来融合不同层级的特征信息,以获取更丰富的语义信息。它包含两个主要组件:
1. **特征金字塔网络(Feature Pyramid):** FPN通过自顶向下和自底向上的方式构建特征金字塔,从不同层级的特征图中提取多尺度的语义信息。通常,特征金字塔由底层到顶层的特征图组成,每个特征图都对应不同的尺度。
2. **横向连接(Lateral Connection):** FPN通过横向连接将低层级的高分辨率特征图与高层级的低分辨率特征图相结合,以获取更丰富的语义信息。这样可以使得网络在不同尺度下都能够获得高质量的特征表示。

       通过利用FPN,可以有效地提高目标检测和语义分割模型在多尺度场景下的性能。FPN被广泛应用于一系列计算机视觉任务中,包括目标检测、语义分割、实例分割等。

FPN的基本步骤 

FPN(Feature Pyramid Network)的基本步骤如下:

1. **构建特征金字塔:** 首先,从底层到顶层构建特征金字塔,每一层都对应不同尺度的特征图。这可以通过在卷积神经网络(CNN)中添加额外的层级或通过下采样(如池化或步幅卷积)来实现。

2. **自底向上路径(Bottom-up Pathway):** 在构建特征金字塔时,从底层到顶层逐步提取特征。通常,这些特征具有不同的分辨率和语义级别。

3. **自顶向下路径(Top-down Pathway):** 在自底向上路径之后,建立自顶向下的路径,通过上采样或插值操作将较低层级的特征图上采样到与较高层级特征图相同的尺寸。

4. **横向连接(Lateral Connection):** 自底向上和自顶向下路径相结合,通过横向连接将来自底层的高分辨率特征图与来自顶层的低分辨率特征图相结合。这些横向连接可以通过简单的1x1卷积操作来实现。

5. **特征融合(Feature Fusion):** 将来自不同层级的特征图融合在一起,以产生最终的多尺度特征图。通常,这可以通过简单地对特征图进行逐元素相加或级联来实现。

6. **应用于任务:** 最终的多尺度特征图可以被应用于目标检测、语义分割等计算机视觉任务中,以提高模型在不同尺度下的性能。

通过这些步骤,FPN能够有效地提取多尺度的语义信息,从而提高模型在多尺度场景下的性能。

金字塔框架介绍 

图1。 (a) 使用图像金字塔构建特征金字塔。特征在每个图像尺度上独立计算,这种方法速度较慢。 (b) 最近的检测系统选择仅使用单尺度特征以实现更快的检测。 (c) 另一种方法是重用由ConvNet计算的金字塔特征层次结构,就像它是一个具有特征化的图像金字塔一样。 (d) 我们提出的特征金字塔网络(FPN)既像(b)和(c)一样快速,又更精确。在这个图中,特征图由蓝色轮廓表示,较粗的轮廓表示语义上更强的特征。

如上图1所示,识别不同尺度的物体是计算机视觉的一个基本挑战,论文列举了几种不同的实现方式。

(a)是图像金字塔,在传统图像处理算法中用得比较多,就是将图片resize到不同的大小,然后分别得到对应大小的特征,然后进行预测。这种方法虽然可以一定程度上解决多尺度的问题,但是很明显,带来的计算量也非常大。

(b) 使用单个feature map进行检测,这种结构在17年的时候是很多人在使用的结构,比如YOLOv1、YOLOv2、Faster R-CNN中使用的就是这种架构。直接使用这种架构导致预测层的特征尺度比较单一,对小目标检测效果比较差

(c) 像SSD(Single Shot Detector)采用这种多尺度特征融合的方式,没有上采样过程,即从网络不同层抽取不同尺度的特征做预测,这种方式不会增加额外的计算量,但是不同的层次的特征图有巨大的语义差距,高分辨率的特征图只有低级特征,损害了表示能力,不利于目标识别。作者认为SSD算法中没有用到足够低层的特征(在SSD中,最低层的特征是VGG网络的conv4_3),而在作者看来足够低层的特征对于检测小物体是很有帮助的。

(d) 经典FPN架构,通过自顶向下和自底向上的路径来构建特征金字塔自底向上的路径是指从低层特征图开始,通过下采样操作逐渐减小特征图的分辨率,同时增加其语义信息。自顶向下的路径是指从顶层特征图开始,通过上采样操作逐渐增加特征图的分辨率。还引入了横向连接,用于在自顶向下自底向上的路径之间传递信息。

 图3展示了横向连接和自顶向下路径的构建模块,通过加法进行合并。

① 自底向上:

自底向上的过程通常是指从网络的低层级特征开始逐步提取特征,直到达到网络的顶层。这个过程通常发生在卷积神经网络(Convolutional Neural Network,CNN)中,用于图像处理和计算机视觉任务。

在自底向上的过程中,每个网络层都会逐步提取出越来越抽象和高级别的特征信息。这些特征信息的提取是通过卷积操作和池化操作等方式来实现的。在网络的早期层级,提取的特征通常与图像的低层次结构相关,例如边缘和纹理等。随着网络层级的增加,提取的特征则变得更加抽象和语义化,例如对象的形状、纹理、和特定部位等。

自底向上的过程在构建特征金字塔(Feature Pyramid)和构建特征融合网络(如FPN)等任务中经常被使用。通过利用这种自底向上的特征提取方式,可以获得多尺度的特征表示,从而提高模型在目标检测、语义分割等任务中的性能。

② 自顶向下:

自顶向下的过程通常是指从网络的顶层开始向下传播信息,逐步细化和调整特征以适应任务的需要。这个过程通常发生在层次性模型或者金字塔结构中,例如特征金字塔网络(Feature Pyramid Network,FPN)等。

在自顶向下的过程中,最初的输入是来自网络的高层特征,这些特征通常具有较高的语义信息和较低的分辨率。然后,这些高层特征通过上采样或者插值操作被扩展到与底层特征相同的尺寸,并通过横向连接与底层特征进行融合。这个过程可以逐步地提高特征的分辨率和精细度,从而增强特征的语义信息并改善模型在任务中的性能。

自顶向下的过程通常用于构建特征金字塔网络(FPN)等结构,在目标检测和语义分割等任务中取得了广泛的应用。通过利用自顶向下的特征传播方式,可以有效地提取多尺度的语义信息,并帮助模型更好地理解图像内容。

③ 横向连接:

采用1×1的卷积核进行连接(减少特征图数量)。

部分参考自:

 目标检测之FPN网络详解-CSDN博客

FPN特征金字塔,插值--学习笔记 - 知乎 

https://www.cnblogs.com/harrymore/p/17452884.html 

重读FPN(Feature Pyramid Network) - 知乎 

这篇关于FPN网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/886864

相关文章

【Altium】查找PCB上未连接的网络

【更多软件使用问题请点击亿道电子官方网站】 1、文档目标: PCB设计后期检查中找出没有连接的网络 应用场景:PCB设计后期,需要检查是否所有网络都已连接布线。虽然未连接的网络会有飞线显示,但是由于布线后期整板布线密度较高,虚连,断连的网络用肉眼难以轻易发现。用DRC检查也可以找出未连接的网络,如果PCB中DRC问题较多,查找起来就不是很方便。使用PCB Filter面板来达成目的相比DRC

通信系统网络架构_2.广域网网络架构

1.概述          通俗来讲,广域网是将分布于相比局域网络更广区域的计算机设备联接起来的网络。广域网由通信子网于资源子网组成。通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网构建,将分布在不同地区的局域网或计算机系统互连起来,实现资源子网的共享。 2.网络组成          广域网属于多级网络,通常由骨干网、分布网、接入网组成。在网络规模较小时,可仅由骨干网和接入网组成

Toolbar+DrawerLayout使用详情结合网络各大神

最近也想搞下toolbar+drawerlayout的使用。结合网络上各大神的杰作,我把大部分的内容效果都完成了遍。现在记录下各个功能效果的实现以及一些细节注意点。 这图弹出两个菜单内容都是仿QQ界面的选项。左边一个是drawerlayout的弹窗。右边是toolbar的popup弹窗。 开始实现步骤详情: 1.创建toolbar布局跟drawerlayout布局 <?xml vers

使用 GoPhish 和 DigitalOcean 进行网络钓鱼

配置环境 数字海洋VPS 我创建的丢弃物被分配了一个 IP 地址68.183.113.176 让我们登录VPS并安装邮件传递代理: ssh root@68.183.113.176apt-get install postfix 后缀配置中的点变量到我们在 DigitalOcean 中分配的 IP:mynetworks nano /etc/postfix/main.cf

Linux网络编程之循环服务器

1.介绍 Linux网络循环服务器是指逐个处理客户端的连接,处理完一个连接后再处理下一个连接,是一个串行处理的方式,比较适合时间服务器,DHCP服务器.对于TCP服务器来说,主要阻塞在accept函数,等待客户端的连接。而对于UDP服务器来说,主要阻塞在recv函数. 2.循环服务器模型 TCP循环服务器: 算法如下:          socket(...);

Linux网络编程之简单并发服务器

1.概念 与前面介绍的循环服务器不同,并发服务器对服务请求并发处理。而循环服务器只能够一个一个的处理客户端的请求,显然效率很低. 并发服务器通过建立多个子进程来实现对请求的并发处理,但是由于不清楚请求客户端的数目,因此很难确定子进程的数目。因此可以动态增加子进程与事先分配的子进程相结合的方法来实现并发服务器。 2. 算法流程 (1)TCP简单并发服务器:     服务器子进程1:

Android 扇形网络控件 - 无网络视图(动画)

前言 一般在APP没有网络的情况下,我们都会用一个无网络的提示图标,在提示方面为了统一app的情况,我们一般使用简单的提示图标,偶尔只需要改变一下图标的颜色就一举两得,而不需要让PS来换一次颜色。当然app有图标特殊要求的就另当别论了。 效果图 当你第一眼看到这样的图,二话不说直接让UI给你切一张图标来的快对吧,我其实开始也是这么想的,但是到了做的app越来越多的时候,你就会发现就算是用

poj 2391 Ombrophobic Bovines (网络流)

这是一道很经典的网络流的题目。首先我们考虑假如我们的时间为无穷大。我们吧每个点拆成2个点 i和i' .。虚拟源点s和汇点t。对于每个点建边(s,i, a[i])  (i‘,t,ib[i]) 。 其中a[i]为给点有多少牛,b[i]为容量。i和j连通 建边 (i,j',inf);如果最大流==所有牛的个数,就可能装下所有的牛。那么现在我们考虑时间。假设最大时间为T.那么如果i到j的的最短时间>T

加载网络图片显示大图

1.将图片的uri列表和下标传给ImagePagerActivity public void imageBrower(int position, ArrayList<String> urls2) {Intent intent = new Intent(this, ImagePagerActivity.class); intent.putExtra(ImagePagerActivity

ESP32使用按键配网并通过LED指示网络状态

前言 上面我们已经可以通过 ESPTOUCH 和 Airkiss 给模块配网,并且存储在 nvs 中,重启后仍然可以联网,只是这样仍然不能满足我们实际的应用,这次我们增加按键作为输入,LED作为输出,实现长按按键配网,并可以通过LED指示网络状态。 添加自己的组件 为了让程序结构更加清晰,所以我们在smart_config例程的基础上做了修改,在main文件夹里新建了main.c 、smar