IJKPLAYER源码分析-OpenSL ES播放

2024-04-08 14:04

本文主要是介绍IJKPLAYER源码分析-OpenSL ES播放,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

    与IJKPLAYER处理AudioTrack播放类似,OpenSL ES的接入需要满足SDL_Aout的接口规范,所不同的是OpenSL ES播放是在native完成的,调用的是NDK接口OpenSL ES的播放能力。关于OpenSL ES的详细介绍,请参考官方文档 OpenSL ES 一文。

    Pipeline及SDL_Aout结构体及相关创建,与AudioTrack一致,请参考前文IJKPLAYER源码分析-AudioTrack播放-CSDN博客

接口

创建SDL_Aout

    创建OpenSL ES的SDL_Aout对象,调用链如下:

ijkmp_android_create() => ffpipeline_create_from_android() => func_open_audio_output() => SDL_AoutAndroid_CreateForOpenSLES()

    使能opensles选项,缺省为0,即使用AudioTrack播放: 

    { "opensles",                           "OpenSL ES: enable",OPTION_OFFSET(opensles),            OPTION_INT(0, 0, 1) },

     若使能了opensles选项,走OpenSL ES播放,相反则走AudioTrack播放:

static SDL_Aout *func_open_audio_output(IJKFF_Pipeline *pipeline, FFPlayer *ffp)
{SDL_Aout *aout = NULL;if (ffp->opensles) {aout = SDL_AoutAndroid_CreateForOpenSLES();} else {aout = SDL_AoutAndroid_CreateForAudioTrack();}if (aout)SDL_AoutSetStereoVolume(aout, pipeline->opaque->left_volume, pipeline->opaque->right_volume);return aout;
}

     OpenSL ES的SDL_Aout对象创建具体在此,遵循SDL_Aout接口规范:

SDL_Aout *SDL_AoutAndroid_CreateForOpenSLES()
{SDLTRACE("%s\n", __func__);SDL_Aout *aout = SDL_Aout_CreateInternal(sizeof(SDL_Aout_Opaque));if (!aout)return NULL;SDL_Aout_Opaque *opaque = aout->opaque;opaque->wakeup_cond = SDL_CreateCond();opaque->wakeup_mutex = SDL_CreateMutex();int ret = 0;SLObjectItf slObject = NULL;ret = slCreateEngine(&slObject, 0, NULL, 0, NULL, NULL);CHECK_OPENSL_ERROR(ret, "%s: slCreateEngine() failed", __func__);opaque->slObject = slObject;ret = (*slObject)->Realize(slObject, SL_BOOLEAN_FALSE);CHECK_OPENSL_ERROR(ret, "%s: slObject->Realize() failed", __func__);SLEngineItf slEngine = NULL;ret = (*slObject)->GetInterface(slObject, SL_IID_ENGINE, &slEngine);CHECK_OPENSL_ERROR(ret, "%s: slObject->GetInterface() failed", __func__);opaque->slEngine = slEngine;SLObjectItf slOutputMixObject = NULL;const SLInterfaceID ids1[] = {SL_IID_VOLUME};const SLboolean req1[] = {SL_BOOLEAN_FALSE};ret = (*slEngine)->CreateOutputMix(slEngine, &slOutputMixObject, 1, ids1, req1);CHECK_OPENSL_ERROR(ret, "%s: slEngine->CreateOutputMix() failed", __func__);opaque->slOutputMixObject = slOutputMixObject;ret = (*slOutputMixObject)->Realize(slOutputMixObject, SL_BOOLEAN_FALSE);CHECK_OPENSL_ERROR(ret, "%s: slOutputMixObject->Realize() failed", __func__);aout->free_l       = aout_free_l;aout->opaque_class = &g_opensles_class;aout->open_audio   = aout_open_audio;aout->pause_audio  = aout_pause_audio;aout->flush_audio  = aout_flush_audio;aout->close_audio  = aout_close_audio;aout->set_volume   = aout_set_volume;aout->func_get_latency_seconds = aout_get_latency_seconds;return aout;
fail:aout_free_l(aout);return NULL;
}

func_get_latency_seconds接口

  • 此接口是OpenSL ES相比于AudioTrack新增的1个接口;
  • 作用是:用来计算OpenSL ES底层buffer缓存了多少ms的音频数据,音视频同步时用来纠正音频的时钟;

    与AudioTrack相比,OpenSL ES增加了func_get_latency_seconds接口: 

    aout->func_get_latency_seconds = aout_get_latency_seconds;

    此接口的具体实现: 

static double aout_get_latency_seconds(SDL_Aout *aout)
{SDL_Aout_Opaque *opaque = aout->opaque;SLAndroidSimpleBufferQueueState state = {0};SLresult slRet = (*opaque->slBufferQueueItf)->GetState(opaque->slBufferQueueItf, &state);if (slRet != SL_RESULT_SUCCESS) {ALOGE("%s failed\n", __func__);return ((double)opaque->milli_per_buffer) * OPENSLES_BUFFERS / 1000;}// assume there is always a buffer in coping// state.count表示已用buffer个数double latency = ((double)opaque->milli_per_buffer) * state.count / 1000;return latency;
}

     以上就是OpenSL ES的SDL_Aout创建过程,大致与AudioTrack类似,遵循了SDL_Aout的接口规范,所不同的是OpenSL ES增加了func_get_latency_seconds接口,用来计算底层缓存的音频ms数;

open_audio

初始化

    OpenSL ES的打开,即OpenSL ES的初始化,主要做以下事情:

  • OpenSL ES的open_audio接口,大致功能与AudioTrack类似;
  • 将音频源的采样参数(采样率、通道数、采样位深)告诉OpenSL ES,并调用CreateAudioPlayer()创建SLObjectItf类型的播放器实例;
  • 使用播放器实例,查询SLPlayItf实例/SLVolumeItf实例/SLAndroidSimpleBufferQueueItf实例;

  • 使用播放器实例SLAndroidSimpleBufferQueueItf类型队列实例,并给该队列注册callback;

  • 根据最终的音频参数(采样率、通道数、采样位深),以及OpenSL ES每个buffer所能容纳的音频PCM数据量(10ms),,计算出最终的buffer总容量,并分配buffer内存;

  • 启动1个audio_thread线程,此线程的作用与AudioTrack的audio_thread作用一致,异步执行所有关于音频的操作,取得音频的PCM数据并喂给OpenSL ES;

  • 将最终的音频参数保存在全局变量is->audio_tgt中,后续若音频参数发生变更,需要重采样并且重置is->audio_tgt的值;

  • 设置OpenSL ES的缺省延迟时间,即OpenSL ES最多缓存了多少秒的PCM数据,此值在音视频同步时纠正音频的时钟有重要用处;

    // 设置缺省时延,若有func_set_default_latency_seconds回调则通过回调更新,没有则设置变量minimal_latency_seconds的值SDL_AoutSetDefaultLatencySeconds(ffp->aout, ((double)(2 * spec.size)) / audio_hw_params->bytes_per_sec);

 pcm buffer

    定义OpenSL ES每个buffer的音频容量,即能装下10ms的PCM数据,一共由255个音频buffer组成,即10 * 255 = 2550ms的数据。

    2个参数的具体宏定义请参照:

#define OPENSLES_BUFFERS 255 /* maximum number of buffers */
#define OPENSLES_BUFLEN  10 /* ms */

    计算最终OpenGL ES的buffer容量,并分配buffer: 

    // 对于opensl es来说,播放的是pcm数据,每个pcm为1帧opaque->bytes_per_frame   = format_pcm->numChannels * format_pcm->bitsPerSample / 8;// 对于opensl es来说,每次播放10ms的pcm数据opaque->milli_per_buffer  = OPENSLES_BUFLEN;// 每OPENSLES_BUFLEN=10ms有多少pcm帧opaque->frames_per_buffer = opaque->milli_per_buffer * format_pcm->samplesPerSec / 1000000; // samplesPerSec is in milliopaque->bytes_per_buffer  = opaque->bytes_per_frame * opaque->frames_per_buffer;opaque->buffer_capacity   = OPENSLES_BUFFERS * opaque->bytes_per_buffer;ALOGI("OpenSL-ES: bytes_per_frame  = %d bytes\n",  (int)opaque->bytes_per_frame);ALOGI("OpenSL-ES: milli_per_buffer = %d ms\n",     (int)opaque->milli_per_buffer);ALOGI("OpenSL-ES: frame_per_buffer = %d frames\n", (int)opaque->frames_per_buffer);ALOGI("OpenSL-ES: bytes_per_buffer = %d bytes\n",  (int)opaque->bytes_per_buffer);ALOGI("OpenSL-ES: buffer_capacity  = %d bytes\n",  (int)opaque->buffer_capacity);// 分配最终的pcm缓冲区opaque->buffer          = malloc(opaque->buffer_capacity);CHECK_COND_ERROR(opaque->buffer, "%s: failed to alloc buffer %d\n", __func__, (int)opaque->buffer_capacity);// (*opaque->slPlayItf)->SetPositionUpdatePeriod(opaque->slPlayItf, 1000);// enqueue empty buffer to start playmemset(opaque->buffer, 0, opaque->buffer_capacity);for(int i = 0; i < OPENSLES_BUFFERS; ++i) {ret = (*opaque->slBufferQueueItf)->Enqueue(opaque->slBufferQueueItf, opaque->buffer + i * opaque->bytes_per_buffer, opaque->bytes_per_buffer);CHECK_OPENSL_ERROR(ret, "%s: slBufferQueueItf->Enqueue(000...) failed", __func__);}

    值得一提的是,OpenGL ES在此所支持的音频采样参数如下:

    CHECK_COND_ERROR((desired->format == AUDIO_S16SYS), "%s: not AUDIO_S16SYS", __func__);CHECK_COND_ERROR((desired->channels == 2 || desired->channels == 1), "%s: not 1,2 channel", __func__);CHECK_COND_ERROR((desired->freq >= 8000 && desired->freq <= 48000), "%s: unsupport freq %d Hz", __func__, desired->freq);

 调用流程

    打开OpenSL ES的调用链,其实是和AudioTrack一致,因为他们遵循了同样的接口规范SDL_Aout,具体如下:

read_thread() => stream_component_open() => audio_open() => SDL_AoutOpenAudio() => aout_open_audio()

    最后,走到aout_open_audio方法: 

static int aout_open_audio(SDL_Aout *aout, const SDL_AudioSpec *desired, SDL_AudioSpec *obtained)
{SDLTRACE("%s\n", __func__);assert(desired);SDLTRACE("aout_open_audio()\n");SDL_Aout_Opaque  *opaque     = aout->opaque;SLEngineItf       slEngine   = opaque->slEngine;SLDataFormat_PCM *format_pcm = &opaque->format_pcm;int               ret = 0;opaque->spec = *desired;// config audio srcSLDataLocator_AndroidSimpleBufferQueue loc_bufq = {SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE,OPENSLES_BUFFERS};int native_sample_rate = audiotrack_get_native_output_sample_rate(NULL);ALOGI("OpenSL-ES: native sample rate %d Hz\n", native_sample_rate);// opensl es仅支持以下参数的audio pcm播放CHECK_COND_ERROR((desired->format == AUDIO_S16SYS), "%s: not AUDIO_S16SYS", __func__);CHECK_COND_ERROR((desired->channels == 2 || desired->channels == 1), "%s: not 1,2 channel", __func__);CHECK_COND_ERROR((desired->freq >= 8000 && desired->freq <= 48000), "%s: unsupport freq %d Hz", __func__, desired->freq);if (SDL_Android_GetApiLevel() < IJK_API_21_LOLLIPOP &&native_sample_rate > 0 &&desired->freq < native_sample_rate) {// Don't try to play back a sample rate higher than the native one,// since OpenSL ES will try to use the fast path, which AudioFlinger// will reject (fast path can't do resampling), and will end up with// too small buffers for the resampling. See http://b.android.com/59453// for details. This bug is still present in 4.4. If it is fixed later// this workaround could be made conditional.//// by VLC/android_opensles.cALOGW("OpenSL-ES: force resample %lu to native sample rate %d\n",(unsigned long) format_pcm->samplesPerSec / 1000,(int) native_sample_rate);format_pcm->samplesPerSec = native_sample_rate * 1000;}format_pcm->formatType       = SL_DATAFORMAT_PCM;format_pcm->numChannels      = desired->channels;format_pcm->samplesPerSec    = desired->freq * 1000; // milli Hz// format_pcm->numChannels      = 2;// format_pcm->samplesPerSec    = SL_SAMPLINGRATE_44_1;format_pcm->bitsPerSample    = SL_PCMSAMPLEFORMAT_FIXED_16;format_pcm->containerSize    = SL_PCMSAMPLEFORMAT_FIXED_16;switch (desired->channels) {case 2:format_pcm->channelMask  = SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT;break;case 1:format_pcm->channelMask  = SL_SPEAKER_FRONT_CENTER;break;default:ALOGE("%s, invalid channel %d", __func__, desired->channels);goto fail;}format_pcm->endianness       = SL_BYTEORDER_LITTLEENDIAN;SLDataSource audio_source = {&loc_bufq, format_pcm};// config audio sinkSLDataLocator_OutputMix loc_outmix = {SL_DATALOCATOR_OUTPUTMIX,opaque->slOutputMixObject};SLDataSink audio_sink = {&loc_outmix, NULL};SLObjectItf slPlayerObject = NULL;const SLInterfaceID ids2[] = { SL_IID_ANDROIDSIMPLEBUFFERQUEUE, SL_IID_VOLUME, SL_IID_PLAY };static const SLboolean req2[] = { SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE };// 在此将audio的采样参数传递给opensl esret = (*slEngine)->CreateAudioPlayer(slEngine, &slPlayerObject, &audio_source,&audio_sink, sizeof(ids2) / sizeof(*ids2),ids2, req2);CHECK_OPENSL_ERROR(ret, "%s: slEngine->CreateAudioPlayer() failed", __func__);opaque->slPlayerObject = slPlayerObject;ret = (*slPlayerObject)->Realize(slPlayerObject, SL_BOOLEAN_FALSE);CHECK_OPENSL_ERROR(ret, "%s: slPlayerObject->Realize() failed", __func__);ret = (*slPlayerObject)->GetInterface(slPlayerObject, SL_IID_PLAY, &opaque->slPlayItf);CHECK_OPENSL_ERROR(ret, "%s: slPlayerObject->GetInterface(SL_IID_PLAY) failed", __func__);ret = (*slPlayerObject)->GetInterface(slPlayerObject, SL_IID_VOLUME, &opaque->slVolumeItf);CHECK_OPENSL_ERROR(ret, "%s: slPlayerObject->GetInterface(SL_IID_VOLUME) failed", __func__);ret = (*slPlayerObject)->GetInterface(slPlayerObject, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &opaque->slBufferQueueItf);CHECK_OPENSL_ERROR(ret, "%s: slPlayerObject->GetInterface(SL_IID_ANDROIDSIMPLEBUFFERQUEUE) failed", __func__);ret = (*opaque->slBufferQueueItf)->RegisterCallback(opaque->slBufferQueueItf, aout_opensles_callback, (void*)aout);CHECK_OPENSL_ERROR(ret, "%s: slBufferQueueItf->RegisterCallback() failed", __func__);// set the player's state to playing// ret = (*opaque->slPlayItf)->SetPlayState(opaque->slPlayItf, SL_PLAYSTATE_PLAYING);// CHECK_OPENSL_ERROR(ret, "%s: slBufferQueueItf->slPlayItf() failed", __func__);// 对于opensl es来说,播放的是pcm数据,每个pcm为1帧opaque->bytes_per_frame   = format_pcm->numChannels * format_pcm->bitsPerSample / 8;// 对于opensl es来说,每次播放是10ms的pcm数据opaque->milli_per_buffer  = OPENSLES_BUFLEN;// 每OPENSLES_BUFLEN 10ms有多少pcm帧opaque->frames_per_buffer = opaque->milli_per_buffer * format_pcm->samplesPerSec / 1000000; // samplesPerSec is in milliopaque->bytes_per_buffer  = opaque->bytes_per_frame * opaque->frames_per_buffer;opaque->buffer_capacity   = OPENSLES_BUFFERS * opaque->bytes_per_buffer;ALOGI("OpenSL-ES: bytes_per_frame  = %d bytes\n",  (int)opaque->bytes_per_frame);ALOGI("OpenSL-ES: milli_per_buffer = %d ms\n",     (int)opaque->milli_per_buffer);ALOGI("OpenSL-ES: frame_per_buffer = %d frames\n", (int)opaque->frames_per_buffer);ALOGI("OpenSL-ES: bytes_per_buffer = %d bytes\n",  (int)opaque->bytes_per_buffer);ALOGI("OpenSL-ES: buffer_capacity  = %d bytes\n",  (int)opaque->buffer_capacity);// 根据计算出来的buffer_capacity分配bufferopaque->buffer          = malloc(opaque->buffer_capacity);CHECK_COND_ERROR(opaque->buffer, "%s: failed to alloc buffer %d\n", __func__, (int)opaque->buffer_capacity);// (*opaque->slPlayItf)->SetPositionUpdatePeriod(opaque->slPlayItf, 1000);// enqueue empty buffer to start playmemset(opaque->buffer, 0, opaque->buffer_capacity);for(int i = 0; i < OPENSLES_BUFFERS; ++i) {ret = (*opaque->slBufferQueueItf)->Enqueue(opaque->slBufferQueueItf, opaque->buffer + i * opaque->bytes_per_buffer, opaque->bytes_per_buffer);CHECK_OPENSL_ERROR(ret, "%s: slBufferQueueItf->Enqueue(000...) failed", __func__);}opaque->pause_on = 1;opaque->abort_request = 0;opaque->audio_tid = SDL_CreateThreadEx(&opaque->_audio_tid, aout_thread, aout, "ff_aout_opensles");CHECK_COND_ERROR(opaque->audio_tid, "%s: failed to SDL_CreateThreadEx", __func__);if (obtained) {*obtained      = *desired;// opensl es音频硬件的缓冲区容量obtained->size = opaque->buffer_capacity;obtained->freq = format_pcm->samplesPerSec / 1000;}return opaque->buffer_capacity;
fail:aout_close_audio(aout);return -1;
}

     以上就是OpenSL ES的完整初始化流程。

audio_thread

    该线程主要做以下事情:

  • 响应业务侧对声音的操作,异步处理诸如play()/pause()/flush()/setVolume()等操作;
  • 通过sdl_audio_callback回调,取得PCM数据,再喂给OpenSL ES播放;
  • 每次取的PCM数据数是opaque->bytes_per_buffer,即OPENSLES_BUFLEN=10ms的PCM数据;

执行操作

    在此临界区执行对声音的操作,播放/暂停/调节音量/flush()等:

        SLAndroidSimpleBufferQueueState slState = {0};SLresult slRet = (*slBufferQueueItf)->GetState(slBufferQueueItf, &slState);if (slRet != SL_RESULT_SUCCESS) {ALOGE("%s: slBufferQueueItf->GetState() failed\n", __func__);SDL_UnlockMutex(opaque->wakeup_mutex);}SDL_LockMutex(opaque->wakeup_mutex);if (!opaque->abort_request && (opaque->pause_on || slState.count >= OPENSLES_BUFFERS)) {while (!opaque->abort_request && (opaque->pause_on || slState.count >= OPENSLES_BUFFERS)) {if (!opaque->pause_on) {(*slPlayItf)->SetPlayState(slPlayItf, SL_PLAYSTATE_PLAYING);}SDL_CondWaitTimeout(opaque->wakeup_cond, opaque->wakeup_mutex, 1000);SLresult slRet = (*slBufferQueueItf)->GetState(slBufferQueueItf, &slState);if (slRet != SL_RESULT_SUCCESS) {ALOGE("%s: slBufferQueueItf->GetState() failed\n", __func__);SDL_UnlockMutex(opaque->wakeup_mutex);}if (opaque->pause_on)(*slPlayItf)->SetPlayState(slPlayItf, SL_PLAYSTATE_PAUSED);}if (!opaque->abort_request && !opaque->pause_on) {(*slPlayItf)->SetPlayState(slPlayItf, SL_PLAYSTATE_PLAYING);}}if (opaque->need_flush) {opaque->need_flush = 0;(*slBufferQueueItf)->Clear(slBufferQueueItf);}if (opaque->need_set_volume) {opaque->need_set_volume = 0;SLmillibel level = android_amplification_to_sles((opaque->left_volume + opaque->right_volume) / 2);ALOGI("slVolumeItf->SetVolumeLevel((%f, %f) -> %d)\n", opaque->left_volume, opaque->right_volume, (int)level);slRet = (*slVolumeItf)->SetVolumeLevel(slVolumeItf, level);if (slRet != SL_RESULT_SUCCESS) {ALOGE("slVolumeItf->SetVolumeLevel failed %d\n", (int)slRet);// just ignore error}}SDL_UnlockMutex(opaque->wakeup_mutex);......

sdl_audio_callback

    此处与AudioTrack逻辑一致,请参考 IJKPLAYER源码分析-AudioTrack播放-CSDN博客

  • 确保通过此callback取得opaque->bytes_per_buffer字节的PCM数据即可,无论是静音PCM数据抑或真实的可播放的PCM数据;

喂PCM数据

    再将取得的PCM数据喂给OpenSL ES播放即可:

        ......next_buffer = opaque->buffer + next_buffer_index * bytes_per_buffer;next_buffer_index = (next_buffer_index + 1) % OPENSLES_BUFFERS;audio_cblk(userdata, next_buffer, bytes_per_buffer);if (opaque->need_flush) {(*slBufferQueueItf)->Clear(slBufferQueueItf);opaque->need_flush = false;}if (opaque->need_flush) {ALOGE("flush");opaque->need_flush = 0;(*slBufferQueueItf)->Clear(slBufferQueueItf);} else {// 每次送给opensl es的Audio样本byte数为OPENSLES_BUFLEN=10ms所采集的PCM样本slRet = (*slBufferQueueItf)->Enqueue(slBufferQueueItf, next_buffer, bytes_per_buffer);if (slRet == SL_RESULT_SUCCESS) {// do nothing} else if (slRet == SL_RESULT_BUFFER_INSUFFICIENT) {// don't retry, just pass throughALOGE("SL_RESULT_BUFFER_INSUFFICIENT\n");} else {ALOGE("slBufferQueueItf->Enqueue() = %d\n", (int)slRet);break;}}

这篇关于IJKPLAYER源码分析-OpenSL ES播放的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/885789

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异