ICP配准算法

2024-04-08 11:52
文章标签 算法 配准 icp

本文主要是介绍ICP配准算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

配准算法

  • 问题定义
  • ICP(point to point)算法思想步骤分解
  • point to point和point to plane的区别
  • ICP配准算法的标准流程
  • NDT

本篇将介绍配准算法,将介绍ICP(point to point)、ICP(point to plane)和NDT算法。其中ICP有两种,point to point表示通过构建点与点的对应关系完成代价损失的最优化,point to plane表示通过构建点到面的对应关系完成代价损失的最优化。

问题定义

配准算法就是通过迭代完成两个点集的旋转矩阵 R R R和平移矩阵 T T T的迭代求解。数学定义如下:
给定源点集 P , P = { p 1 , p 2 , . . . , p n } , p i ∈ R m P,P=\{p_1,p_2,...,p_n\},p_i\in R_m P,P={p1,p2,...,pn},piRm,和目标点击 Q = { q 1 , q 2 , . . . , q n } , q i ∈ R m Q=\{q_1,q_2,...,q_n\},q_i\in R_m Q={q1,q2,...,qn},qiRm。两个点集之间存在着旋转 R R R和平移 t t t的转化关系,构建如下损失函数(点与点在某个尺度上的距离), E ( R , t ) = 1 n ∑ i = 1 n ∥ q i − R p i − t ∥ 2 E(R, t)=\frac{1}{n} \sum_{i=1}^{n}\left\|q_{i}-R p_{i}-t\right\|^{2} E(R,t)=n1i=1nqiRpit2最优化损失函数 R , t = arg ⁡ R , t min ⁡ E ( R , t ) = arg ⁡ R , t min ⁡ 1 n ∑ i = 1 n ∥ q i − R p i − t ∥ 2 = ∥ Q − ( R P + t 1 T ) ∥ F 2 , s.t.  R R T = I m \begin{align} R, t&=\arg _{R, t} \min E(R, t) \\&=\arg _{R, t} \min \frac{1}{n} \sum_{i=1}^{n}\left\|q_{i}-R p_{i}-t\right\|^{2}{\tiny } \\ &= \left\|Q-\left(R P+t \mathbf{1}^{T}\right)\right\|_{F}^{2}, \text { s.t. } R R^{T}=I_{m} \end{align} R,t=argR,tminE(R,t)=argR,tminn1i=1nqiRpit2= Q(RP+t1T) F2, s.t. RRT=Im其中, P = [ p 1 , . . . , p n ] ∈ R m × n , p i ∈ R m Q = [ q 1 , . . . , q n ] ∈ R m × n , q i ∈ R m 1 = [ 1 , 1 , . . . , 1 ] T ∈ R n P = [p_1,...,p_n] \in R_{m \times n}, p_i \in R_m \\\\\\\\\\\\\\\\\\\\\\ Q = [q_1,...,q_n] \in R_{m \times n}, q_i \in R_m \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \mathbf{1} = [1,1,...,1]^T \in R_n P=[p1,...,pn]Rm×n,piRmQ=[q1,...,qn]Rm×n,qiRm 1=[1,1,...,1]TRn得,也是Procrustes Transformation的求解过程 μ p = 1 n ∑ i = 1 n p i , μ 1 = 1 n ∑ i = 1 n q i P ′ = { p i − μ p } , Q ′ = { q i − μ q } O ′ P ′ T = U Σ V T R = U V T , t = μ q − R μ q \mu_p = {1 \over n} \sum_{i=1}^np_i, \mu_1 = {1 \over n} \sum_{i=1}^nq_i \\ P^{'} =\{ p_i - \mu_p \}, Q^{'}=\{q_i- \mu_q \} \\ O^{'}P^{'T} = U \Sigma V^T \\ R = U V^T, t = \mu_q-R\mu_q μp=n1i=1npi,μ1=n1i=1nqiP={piμp},Q={qiμq}OPT=UΣVTR=UVT,t=μqRμq其中 R , t R,t R,t即为集合P与Q之间的旋转平移,不过需要注意的是,这是迭代解,求出的只是当前集合状态的最优解。并不是最终解。

ICP(point to point)算法思想步骤分解

以ICP算法为例子,配准算法分为以下步骤:

  1. 给定集合P和Q,从中提取部分点(记为集合 s u b P , s u b Q subP,subQ subPsubQ)进行求解,可以使用随机采样,体素降采样,NSS采样和特征提取(比如ISS提取特征点)
  2. 选定匹配的若干点对,对于选出集合 s u b P subP subP中的每个点 p i p_i pi,在集合 s u b Q subQ subQ中找到邻居点。邻居点的尺度可以使用欧式空间最邻近思想,也可以是特征描述子空间的距离(对应ISS算法提取的特征点的特征描述子),也可以选用Normal shooting思想和Projection思想。要求双方互为最近邻居,并且为了算法的精度,可以仅仅使用点对距离超过某值的点对,或者选用相对距离前百分之k的点对。
    前两个都容易理解,后两个的直观表达如下:
    在这里插入图片描述
    在这里插入图片描述
  3. 构建point to point类型的优化函数进行迭代,完成当前迭代的旋转平移矩阵求解。
    R , t = arg ⁡ R , t min ⁡ E ( R , t ) = arg ⁡ R , t min ⁡ 1 n ∑ i = 1 n ∥ q i − R p i − t ∥ 2 = ∥ Q − ( R P + t 1 T ) ∥ F 2 , s.t.  R R T = I m \begin{align} R, t&=\arg _{R, t} \min E(R, t) \\&=\arg _{R, t} \min \frac{1}{n} \sum_{i=1}^{n}\left\|q_{i}-R p_{i}-t\right\|^{2}{\tiny } \\ &= \left\|Q-\left(R P+t \mathbf{1}^{T}\right)\right\|_{F}^{2}, \text { s.t. } R R^{T}=I_{m} \end{align} R,t=argR,tminE(R,t)=argR,tminn1i=1nqiRpit2= Q(RP+t1T) F2, s.t. RRT=Im4. 判断旋转平移矩阵的更新量是否已经满足阈值,如果是满足就终止,输出最后的结果。如果没有,就迭代到最大次数。

point to point和point to plane的区别

  • 算法思想的不同
    point to point和point to plane类型的ICP算法之间的优化函数构建思想不同。

    • 在点对点配准中,算法通过最小化两个点云之间的点与点之间的距离来实现配准。这意味着算法试图将一个点云中的每个点与另一个点云中的最近邻点对齐,然后通过优化来最小化它们之间的距离。
    • 点对点配准适用于两个点云表面之间存在较小的形变,并且点云中的噪声较少的情况。
    • 点对点匹配只是寻找了匹配点,点邻域内的信息没有使用,没有考虑上下文,并且最近邻查找的时候时间消耗大。
    • 在点对面配准中,不仅考虑了点的位置,还考虑了点的法线(即表面的朝向),从而更好地描述了表面的几何特征。
    • 点对面配准试图最小化一个点到另一个点云表面的法线方向上的投影之间的距离,而不仅仅是点之间的距离。这意味着算法不仅考虑了点的位置,还考虑了点云表面的曲率和法线方向,因此能够更好地处理曲面之间的配准。
    • 点对面配准通常比点对点配准更稳健,因为它们对点云中的噪声和表面曲率变化更具有鲁棒性
  • 优化函数求解不同
    point to point的优化函数形式为:
    R , t = arg ⁡ R , t min ⁡ E ( R , t ) = arg ⁡ R , t min ⁡ 1 n ∑ i = 1 n ∥ q i − R p i − t ∥ 2 \begin{align} R, t&=\arg _{R, t} \min E(R, t) \\&=\arg _{R, t} \min \frac{1}{n} \sum_{i=1}^{n}\left\|q_{i}-R p_{i}-t\right\|^{2}{\tiny } \\ \end{align} R,t=argR,tminE(R,t)=argR,tminn1i=1nqiRpit2point to plane的优化函数形式为: R , t = arg ⁡ R , t min ⁡ E ( R , t ) = arg ⁡ R , t min ⁡ 1 n ∑ i = 1 n ∥ ( R p i + t − q i ) T n i ∥ 2 \begin{align} R, t&=\arg _{R, t} \min E(R, t) \\&=\arg _{R, t} \min \frac{1}{n} \sum_{i=1}^{n}\left\|(R p_{i}+t-q_i)^Tn_i\right\|^{2}{\tiny } \\ \end{align} R,t=argR,tminE(R,t)=argR,tminn1i=1n (Rpi+tqi)Tni 2其中, n i n_i ni为点 q i q_i qi的法向量。
    对于point to plane的优化函数,采用最小二乘法的方式进行求解,计算过程如下,
    在这里插入图片描述在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

ICP配准算法的标准流程

  • 粗配置
    粗配准使用RANSAC+ISS+FPFH完成

    • 使用ISS算法完成点集P和Q的特征点提取,并计算FPFH特征描述子ru
    • 在特征描述空间寻找两个点集中关键点在对方集合中的配对点,构成配对点集集合。
    • 采用RANSAC算法,从配对点集中,选择3个点对。采用Procrustes Transformation的求解思路完成3个点对的 R , t R,t Rt求解
    • 根据得到的 R , t R,t R,t,完成源点云P的几何位置变换。然后计算配对点之间的几何距离,设置距离阈值,得到内点个数。
    • 如果内点个数满足阈值要求,就终止。如果不满足,就一直迭代到最大次数,选择所有迭代中内点比例最高的一次迭代的 R , t R,t R,t结果,作为ICP配准的初始解
  • 精配置
    精配准的时候,可以不用完成点云的降采样,选用全部点进行计算。尺度为欧式几何空间,在欧式空间中,寻找双方互为最近邻的配对点,保留TOP k进行P进行计算。

NDT

NDT算法有点复杂,NDT相对ICP而言,可以更好的利用周围邻域信息,有更好的鲁棒性,而且效率而比较高。具体思路等之后整理

这篇关于ICP配准算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/885510

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖