Canny算子

2024-04-08 07:08
文章标签 canny 算子

本文主要是介绍Canny算子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Canny算子概述

        通常情况下边缘检测的目的是在保留原有图像属性的情况下,显著减少图像的数据规模。目前有多种算法可以进行边缘检测,虽然Canny算法年代久远,但可以说它是边缘检测的一种标准算法,而且仍在研究中广泛使用。

        Canny算子的基本原理:总的来说,图像的边缘检测必须满足两个步骤:

(1)有效的抑制噪声,使用高斯算子对图像进行平滑;

(2)尽量精确的确定边缘的位置;

二、算法的实现步骤

Canny边缘检测算法可以分为以下5个步骤:
1.  应用高斯滤波来平滑图像,目的是去除噪声;
2.  找寻图像的强度梯度(intensity gradients);
3.  应用非最大抑制(non-maximum suppression)技术来消除边误检(本来不是但检测出来是);
4.  应用双阈值的方法来决定可能的(潜在的)边界;
5.  利用滞后技术来跟踪边界;
在Canny算法中,首先在x和y方向求一阶导数,然后组合为4个方向的导数。这些方向的导数达到局部最大值的点就是组成边缘的候选点。Canny算法最重要的一个新的特点是其试图将独立边的候选像素拼装成轮廓。轮廓的形成是对这些像素运用滞后性阈值。
三、函数
void cvCanny( const CvArr* image, CvArr* edges, double threshold1,double threshold2, int aperture_size=3 );
参数说明:
image    输入图像.
edges    输出的边缘图像
threshold1   第一个阈值
threshold2   第二个阈值
aperture_size  Sobel 算子内核大小 (见 cvSobel).
函数 cvCanny 采用 CANNY 算法发现输入图像的边缘而且在输出图像中标识这些边缘。threshold1和threshold2 当中的小阈值用来控制边缘连接,大的阈值用来控制强边缘的初始分割。

 

 

这篇关于Canny算子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884898

相关文章

spark算子集锦

Spark 是大数据领域的一大利器,花时间总结了一下 Spark 常用算子,正所谓温故而知新。 Spark 算子按照功能分,可以分成两大类:transform 和 action。Transform 不进行实际计算,是惰性的,action 操作才进行实际的计算。如何区分两者?看函数返回,如果输入到输出都是RDD类型,则认为是transform操作,反之为action操作。 准备 准备阶段包括s

OrangePi AIpro 香橙派 昇腾 Ascend C 算子开发 与 调用 - Tiling实现 2

OrangePi AIpro 香橙派 昇腾 Ascend C 算子开发 与 调用 - Tiling实现 2 flyfish 前置知识 1 前置知识 2 Host侧CPU和Device侧NPU的主要区别 不同的硬件资源 CPU是为了执行通用计算任务而设计的,但在处理大量的并行计算(如矩阵乘、批数据处理)时效率不高。NPU是为了加速机器学习和深度学习任务而设计的,它擅长执行大量的并行计算。N

fpga图像处理实战-边缘检测 (Roberts算子)

Roberts算子         Roberts算子是一种用于边缘检测的算子,主要用于图像处理中检测图像的边缘。它是最早的边缘检测算法之一,以其计算简单、速度快而著称。Roberts算子通过计算图像像素在对角方向的梯度来检测边缘,从而突出图像中灰度变化最剧烈的部分。 原理             Roberts算子通过对图像应用两个2x2的卷积核(也称为掩模或滤波器)来计算图像在水平和垂直

图像边缘检测技术详解:利用OpenCV实现Sobel算子

图像边缘检测技术详解:利用OpenCV实现Sobel算子 前言Sobel算子的原理代码演示结果展示结语 前言   在数字图像处理的广阔领域中,边缘检测技术扮演着至关重要的角色。无论是在科学研究、工业自动化,还是在日常生活中的智能设备中,我们都需要从图像中提取有用的信息。边缘,作为图像中亮度变化最显著的地方,为我们提供了识别和理解图像内容的关键线索。因此,边缘检测算法成为了计算机视

OrangePi AIpro 香橙派 昇腾 Ascend C 算子开发 与 调用 - Tiling实现

OrangePi AIpro 香橙派 昇腾 Ascend C 算子开发 与 调用 - Tiling实现 flyfish 前置知识 基于Kernel直调工程的算子开发流程图 其中有一个Tiling实现 什么是Tiling、Tiling实现 计算API,包括标量计算API、向量计算API、矩阵计算API,分别实现调用Scalar计算单元、Vector计算单元、Cube计算单元执行计算的功

深度学习常用算子

深度学习常用算子 算子功能ReluReLU(x)=max(0,x)LeakyReluLeakyRelu(x) = (x >= 0 ? x : x*negative_slope)Relu6LeakyRelu(x) = max(max(x, 0), 6)Tantanh(x)=(exp(x)-exp(-x))/(exp(x)+exp(-x))sigmoidsigmoid(x) = 1.

计算机 软件 什么是算子

算法(algorithm)是为了达到某个目标,实施的一系列指令的过程,而指令包含算子(operator)和操作数(operand)。   算子:operator, 简单说来就是进行某种“操作“,动作。算法中的一个函数、几行可以重复使用的代码、一个数学中的平方操作,这些都可以认为是算子 操作数:operand,被操作的对象,称之为操作数。     广义的讲,对任何函数进行某一项操作都可以

Halcon提取边缘线段lines_gauss 算子

Halcon提取边缘线段lines_gauss 算子 edges_color_sub_pix和edges_sub_pix两个算子使用边缘滤波器进行边缘检测。还有一个常用的算子lines_gauss算子,也可以用于提取边缘线段,它的鲁棒性非常好,提取出的线段类型是亚像素精度的XLD轮廓。其原型如下: lines gauss(Image : Lines : Sigma, Low, High, Li

Python OpenCV -- Canny 边缘检测 (十一)

Canny 边缘检测 原理   Canny 边缘检测算法 是 John F. Canny 于 1986年开发出来的一个多级边缘检测算法,也被很多人认为是边缘检测的 最优算法, 最优边缘检测的三个主要评价标准是:   低错误率: 标识出尽可能多的实际边缘,同时尽可能的减少噪声产生的误报。   高定位性: 标识出的边缘要与图像中的实际边缘尽可能接近。   最小响应: 图像中的边缘只能标识一次。

Sobel算子,Scharr算子和Laplacian算子

图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。有许多方法用于边缘检测, 绝大部分可以划分为两类:基于搜索和基于零穿越。 基于搜索:通过寻找图像一阶导数中的最大值来检测边界,然后利用计算结果估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值,代表算法是Sobel算子和Scharr算子 基于零穿越:通过寻找图像二阶导数零穿越来寻找边