YOLO算法改进Backbone系列之:PVT

2024-04-08 04:28

本文主要是介绍YOLO算法改进Backbone系列之:PVT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:尽管基于CNNs的backbone在多种视觉任务中取得重大进展,但本文提出了一个用于密集预测任务的、无CNN的的简单backbone——Pyramid Vision Transformer(PVT)。相比于ViT专门用于图像分类的设计,PVT将金字塔结构引入到transformer,使得可以进行下游各种密集预测任务,如检测、分割等。与现有技术相比,PVT有如下优点:(1)相比于ViT的低分辨率输出、高计算复杂度、高内存占用,PVT不仅可以对图像进行密集划分训练以达到搞输出分辨率的效果(这对密集预测很重要),还可以使用一个逐渐缩小的金字塔来降低大feature maps的计算量;(2)PVT兼具了CNNs和Transformer的优点,使其成为一个通用的无卷积backbone,可以直接替换基于CNN的backbone;(3)大量实验表明,PVT可以提高多种下游任务的性能,如目标检测、语义/实例分割等。比如,参数量相当的情况下, RetinaNet+PVT可以在COCO上达到40.4AP,而RetinNet+ResNet50只有36.3AP。作者希望PVT能够成为像素级预测任务的一种可供选择的backbone,并促进后续的研究。

CNN通过stack CNN 层来学习一个层次化的feature representations, 并且随着层数的增加,感受野越来越大, channel数越来越大,feature map尺寸越来越小,然后后边连接一到多个特定的任务网络来执行具体的任务;
如图b, 经典的ViT是一个柱式结构,实际上就是stack transformer block, 为了把NLP中的Transformer用到Vision中,惯用做法是通过网格化把feature转化为sequence of patches,每个patches的尺寸一般为32 x 32,
如图c即为所提出的Pyramid Vision Transformer (PVT), 也是首先把figure 转化为Sequence of patches, 从结构来说也是学习一个层次化的representation,只不过基本的building block 已经由 Conv. 替换为 Attention module.
在这里插入图片描述

PVT和ViT都是纯Transformer的模型,没有任何卷积操作,而两者主要的不同在于PVT引入了特征金字塔结构。在ViT中,使用的是传统Transformer,其输入与输出尺寸相同。由于资源限制,ViT的输出只能是一个比较粗糙的feature map,如1616、3232,相应的其输出步幅也比较低,如16步长、32步长。结果就导致ViT很难直接用于那些对分辨率要求比较高的密集预测任务。PVT通过引入渐进缩减金字塔打破了Transformer的这种限制,可以像传统CNN backbone那样生成多尺度feature map。此外,还设计了一个简单有效的注意力层—SRA,来处理高分辨率feature maps并减低计算复杂度和内存消耗。总的来说,PVT相比ViT有如下优势:
(1)更加灵活:可以在不同的stage生成不同分辨率、通道的feature maps
(2)更加通用:可以轻松嵌入到大多下游任务的模型中
(3)对计算、内存更加友好:可以处理高分辨率的feature maps
在这里插入图片描述
在这里插入图片描述

PVT模型变体配置信息
在这里插入图片描述

在YOLOv5项目中添加模型作为Backbone使用的教程:
(1)将YOLOv5项目的models/yolo.py修改parse_model函数以及BaseModel的_forward_once函数
在这里插入图片描述
在这里插入图片描述

(2)在models/backbone(新建)文件下新建pvt.py,添加如下的代码:
在这里插入图片描述

(3)在models/yolo.py导入模型并在parse_model函数中修改如下(先导入文件):
在这里插入图片描述

(4)在model下面新建配置文件:yolov5_pvt.yaml
在这里插入图片描述

(5)运行验证:在models/yolo.py文件指定–cfg参数为新建的yolov5_pvt.yaml
在这里插入图片描述

这篇关于YOLO算法改进Backbone系列之:PVT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884557

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个