Python学习笔记——数据分析之数据可视化工具实战案例:世界高峰数据可视化

本文主要是介绍Python学习笔记——数据分析之数据可视化工具实战案例:世界高峰数据可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

世界高峰数据可视化 (World's Highest Mountains)

参考:https://www.kaggle.com/alex64/d/abcsds/highest-mountains/let-s-climb


import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import stylestyle.use('ggplot')     # 设置图片显示的主题样式# 解决matplotlib显示中文问题
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题dataset_path = './dataset/Mountains.csv'def preview_data(data):"""数据预览"""# 数据预览print(data.head())# 数据信息print(data.info())def proc_success(val):"""处理 'Ascents bef. 2004' 列中的数据"""if '>' in str(val):return 200elif 'Many' in str(val):return 160else:return valdef run_main():"""主函数"""data = pd.read_csv(dataset_path)preview_data(data)# 数据重构# 重命名列名data.rename(columns={'Height (m)': 'Height', 'Ascents bef. 2004': 'Success','Failed attempts bef. 2004': 'Failed'}, inplace=True)# 数据清洗data['Failed'] = data['Failed'].fillna(0).astype(int)data['Success'] = data['Success'].apply(proc_success)data['Success'] = data['Success'].fillna(0).astype(int)data = data[data['First ascent'] != 'unclimbed']data['First ascent'] = data['First ascent'].astype(int)# 可视化数据# 1. 登顶次数 vs 年份plt.hist(data['First ascent'].astype(int), bins=20)plt.ylabel('高峰数量')plt.xlabel('年份')plt.title('登顶次数')plt.savefig('./first_ascent_vs_year.png')plt.show()# 2. 高峰vs海拔data['Height'].plot.hist(color='steelblue', bins=20)plt.bar(data['Height'],(data['Height'] - data['Height'].min()) / (data['Height'].max() - data['Height'].min()) * 23,   # 按比例缩放color='red',width=30, alpha=0.2)plt.ylabel('高峰数量')plt.xlabel('海拔')plt.text(8750, 20, "海拔", color='red')plt.title('高峰vs海拔')plt.savefig('./mountain_vs_height.png')plt.show()# 3. 首次登顶data['Attempts'] = data['Failed'] + data['Success']  # 攀登尝试次数fig = plt.figure(figsize=(13, 7))fig.add_subplot(211)plt.scatter(data['First ascent'], data['Height'], c=data['Attempts'], alpha=0.8, s=50)plt.ylabel('海拔')plt.xlabel('登顶')fig.add_subplot(212)plt.scatter(data['First ascent'], data['Rank'].max() - data['Rank'], c=data['Attempts'], alpha=0.8, s=50)plt.ylabel('排名')plt.xlabel('登顶')plt.savefig('./mountain_vs_attempts.png')plt.show()# 课后练习,尝试使用seaborn或者bokeh重现上述显示的结果if __name__ == '__main__':run_main()

这篇关于Python学习笔记——数据分析之数据可视化工具实战案例:世界高峰数据可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883866

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口