Python学习笔记——数据分析之数据可视化工具实战案例:世界高峰数据可视化

本文主要是介绍Python学习笔记——数据分析之数据可视化工具实战案例:世界高峰数据可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

世界高峰数据可视化 (World's Highest Mountains)

参考:https://www.kaggle.com/alex64/d/abcsds/highest-mountains/let-s-climb


import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import stylestyle.use('ggplot')     # 设置图片显示的主题样式# 解决matplotlib显示中文问题
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题dataset_path = './dataset/Mountains.csv'def preview_data(data):"""数据预览"""# 数据预览print(data.head())# 数据信息print(data.info())def proc_success(val):"""处理 'Ascents bef. 2004' 列中的数据"""if '>' in str(val):return 200elif 'Many' in str(val):return 160else:return valdef run_main():"""主函数"""data = pd.read_csv(dataset_path)preview_data(data)# 数据重构# 重命名列名data.rename(columns={'Height (m)': 'Height', 'Ascents bef. 2004': 'Success','Failed attempts bef. 2004': 'Failed'}, inplace=True)# 数据清洗data['Failed'] = data['Failed'].fillna(0).astype(int)data['Success'] = data['Success'].apply(proc_success)data['Success'] = data['Success'].fillna(0).astype(int)data = data[data['First ascent'] != 'unclimbed']data['First ascent'] = data['First ascent'].astype(int)# 可视化数据# 1. 登顶次数 vs 年份plt.hist(data['First ascent'].astype(int), bins=20)plt.ylabel('高峰数量')plt.xlabel('年份')plt.title('登顶次数')plt.savefig('./first_ascent_vs_year.png')plt.show()# 2. 高峰vs海拔data['Height'].plot.hist(color='steelblue', bins=20)plt.bar(data['Height'],(data['Height'] - data['Height'].min()) / (data['Height'].max() - data['Height'].min()) * 23,   # 按比例缩放color='red',width=30, alpha=0.2)plt.ylabel('高峰数量')plt.xlabel('海拔')plt.text(8750, 20, "海拔", color='red')plt.title('高峰vs海拔')plt.savefig('./mountain_vs_height.png')plt.show()# 3. 首次登顶data['Attempts'] = data['Failed'] + data['Success']  # 攀登尝试次数fig = plt.figure(figsize=(13, 7))fig.add_subplot(211)plt.scatter(data['First ascent'], data['Height'], c=data['Attempts'], alpha=0.8, s=50)plt.ylabel('海拔')plt.xlabel('登顶')fig.add_subplot(212)plt.scatter(data['First ascent'], data['Rank'].max() - data['Rank'], c=data['Attempts'], alpha=0.8, s=50)plt.ylabel('排名')plt.xlabel('登顶')plt.savefig('./mountain_vs_attempts.png')plt.show()# 课后练习,尝试使用seaborn或者bokeh重现上述显示的结果if __name__ == '__main__':run_main()

这篇关于Python学习笔记——数据分析之数据可视化工具实战案例:世界高峰数据可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883866

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核