Python学习笔记——数据分析之数据可视化工具实战案例:世界高峰数据可视化

本文主要是介绍Python学习笔记——数据分析之数据可视化工具实战案例:世界高峰数据可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

世界高峰数据可视化 (World's Highest Mountains)

参考:https://www.kaggle.com/alex64/d/abcsds/highest-mountains/let-s-climb


import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import stylestyle.use('ggplot')     # 设置图片显示的主题样式# 解决matplotlib显示中文问题
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题dataset_path = './dataset/Mountains.csv'def preview_data(data):"""数据预览"""# 数据预览print(data.head())# 数据信息print(data.info())def proc_success(val):"""处理 'Ascents bef. 2004' 列中的数据"""if '>' in str(val):return 200elif 'Many' in str(val):return 160else:return valdef run_main():"""主函数"""data = pd.read_csv(dataset_path)preview_data(data)# 数据重构# 重命名列名data.rename(columns={'Height (m)': 'Height', 'Ascents bef. 2004': 'Success','Failed attempts bef. 2004': 'Failed'}, inplace=True)# 数据清洗data['Failed'] = data['Failed'].fillna(0).astype(int)data['Success'] = data['Success'].apply(proc_success)data['Success'] = data['Success'].fillna(0).astype(int)data = data[data['First ascent'] != 'unclimbed']data['First ascent'] = data['First ascent'].astype(int)# 可视化数据# 1. 登顶次数 vs 年份plt.hist(data['First ascent'].astype(int), bins=20)plt.ylabel('高峰数量')plt.xlabel('年份')plt.title('登顶次数')plt.savefig('./first_ascent_vs_year.png')plt.show()# 2. 高峰vs海拔data['Height'].plot.hist(color='steelblue', bins=20)plt.bar(data['Height'],(data['Height'] - data['Height'].min()) / (data['Height'].max() - data['Height'].min()) * 23,   # 按比例缩放color='red',width=30, alpha=0.2)plt.ylabel('高峰数量')plt.xlabel('海拔')plt.text(8750, 20, "海拔", color='red')plt.title('高峰vs海拔')plt.savefig('./mountain_vs_height.png')plt.show()# 3. 首次登顶data['Attempts'] = data['Failed'] + data['Success']  # 攀登尝试次数fig = plt.figure(figsize=(13, 7))fig.add_subplot(211)plt.scatter(data['First ascent'], data['Height'], c=data['Attempts'], alpha=0.8, s=50)plt.ylabel('海拔')plt.xlabel('登顶')fig.add_subplot(212)plt.scatter(data['First ascent'], data['Rank'].max() - data['Rank'], c=data['Attempts'], alpha=0.8, s=50)plt.ylabel('排名')plt.xlabel('登顶')plt.savefig('./mountain_vs_attempts.png')plt.show()# 课后练习,尝试使用seaborn或者bokeh重现上述显示的结果if __name__ == '__main__':run_main()

这篇关于Python学习笔记——数据分析之数据可视化工具实战案例:世界高峰数据可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883866

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

MySQL中删除重复数据SQL的三种写法

《MySQL中删除重复数据SQL的三种写法》:本文主要介绍MySQL中删除重复数据SQL的三种写法,文中通过代码示例讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下... 目录方法一:使用 left join + 子查询删除重复数据(推荐)方法二:创建临时表(需分多步执行,逻辑清晰,但会

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,