深度学习神经网络 MNIST手写数据辨识 3 应用接口

2024-04-07 20:58

本文主要是介绍深度学习神经网络 MNIST手写数据辨识 3 应用接口,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

整理一下,形成一个应用程序。

首先仍然是导入各种包:

from PIL import Image
import numpy as np
import tensorflow as tf
import mnist_forward2
import mnist_backward2
import mnist_test2
def restore_model1(testPicArr):
#创建一个默认图,在该图中执行以下操作

第一个函数是恢复模型的函数。已经介绍过很多次了,这里再简单讲解一下。

构建计算图的输入输出,这里x代表输入数据,y代表输出数据,preValue相当于把输出y中数据最高的位的坐标得到(概率最大值)

        x = tf.placeholder(tf.float32, [None, mnist_forward2.INPUT_NODE])y = mnist_forward2.forward(x, None)preValue = tf.argmax(y, 1) #得到概率最大的预测值

然后恢复滑动平均值参数,并开始训练会话。注意会话中得到概率最大值的函数:

preValue = sess.run(preValue, feed_dict={x:testPicArr})

它会执行整个计算图。

第二个函数是用来初始化图像的程序:

def pre_pic(picName):

没什么可说的,粘贴如下:

    img = Image.open(picName)reIm = img.resize((28,28),Image.ANTIALIAS)im_arr = np.array(reIm.convert('L'))threshold = 50for i in range(28):for j in range(28):im_arr[i][j] = 255 - im_arr[i][j]if(im_arr[i][j]<threshold):im_arr[i][j] = 0else:im_arr[i][j] = 255nm_arr = im_arr.reshape([1,784])nm_arr = nm_arr.astype(np.float32)img_ready = np.multiply(nm_arr,1.0/255.0)return img_ready

这里的reIm = img.resize((28,28),Image.ANTIALIAS)表示变为大小28*28,并启动反混叠插值。
模式“L” 为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白。注意输入数据的维度,[1,784] ,表示1行784列.

第三个函数是调用我们之前写的两个函数,首先输入图像测试路径,然后预处理,之后恢复会话并测试。

    for i in range(testNum):testPic = input("the path of test picture:")testPicArr = pre_pic(testPic)preValue = restore_model1(testPicArr)print("The prediction number is:" + str(preValue))

我们上传几张自己写的图片:

测试结果都是正确的。

这篇关于深度学习神经网络 MNIST手写数据辨识 3 应用接口的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883658

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置