本文主要是介绍AcWing 789. 数的范围——算法基础课题解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
AcWing 789. 数的范围
题目描述
给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。
对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 00 开始计数)。
如果数组中不存在该元素,则返回 -1 -1
。
输入格式
第一行包含整数 n 和 q,表示数组长度和询问个数。
第二行包含 n 个整数(均在 1∼10000 范围内),表示完整数组。
接下来 q 行,每行包含一个整数 k,表示一个询问元素。
输出格式
共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回 -1 -1
。
数据范围
1≤n≤100000
1≤q≤10000
1≤k≤10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1
C++
#include <iostream>using namespace std;const int N = 1e5 + 10;int main() {int n, q;int a[N];cin >> n >> q;for (int i = 0; i < n; i++) cin >> a[i];while (q--) {int x;cin >> x;int l = 0, r = n - 1;while (l < r) {int mid = (l + r) >> 1;if (a[mid] >= x) r = mid;else l = mid + 1;}if (a[l] != x) cout << "-1 -1" << endl;else {cout << l << " ";l = 0, r = n - 1;while (l < r) {int mid = (l + r + 1) >> 1;if (a[mid] <= x) l = mid;else r = mid - 1;}cout << l << endl;}}
}
Go
package mainimport "fmt"const N = 1e5 + 10func main() {var n, q intvar a [N]intfmt.Scanf("%d%d", &n, &q)for i := 0; i < n; i++ {fmt.Scanf("%d", &a[i])}for i := q; i > 0; i-- {var x intfmt.Scanf("%d", &x)l := 0r := n - 1for l < r {mid := (l + r) / 2if a[mid] >= x {r = mid} else {l = mid + 1}}if a[l] != x {fmt.Println("-1 -1")} else {fmt.Print(l, " ")l = 0r = n - 1for l < r {mid := (l + r + 1) / 2if a[mid] <= x {l = mid} else {r = mid - 1}}fmt.Println(l)}}
}
思路
寻找左边界使用q[mid] >= x
的逻辑
当我们使用q[mid] >= x
条件时,意味着每当中间元素的值大于等于目标值时,我们都将搜索范围的右边界调整为mid
。这样做的效果是:
- 如果
q[mid]
等于x
,那么这个位置可能是x
的最左侧出现位置,但我们还需要继续向左搜索,以确认是否有更左侧的x
。因此,我们将右边界调整为mid
,以缩小搜索范围,继续向左侧寻找。 - 如果
q[mid]
大于x
,即使这个值不是我们要找的,它仍然表明x
(如果存在)必定在mid
的左侧,因此我们同样需要将右边界调整为mid
,以排除右侧的非目标区域。
为何不使用q[mid] > x
如果我们使用q[mid] > x
来决定是否调整右边界,则当q[mid]
恰好等于x
时,我们会继续在右侧半区间搜索,这将错过最左侧的x
,因为我们没有排除中间元素即使它等于x
。
寻找右边界使用q[mid] <= x
的逻辑
- 当
q[mid]
等于x
时:即使我们找到了一个x
,我们仍需要确定这是否是最右侧的x
。因此,我们将左边界l
调整为mid
,而不是结束搜索。这样可以保证如果存在多个x
,我们最终能找到最右边的一个。搜索继续在当前找到的x
的右侧进行,因为左边的x
已经不影响结果了。 - 当
q[mid]
小于x
时:这意味着mid
及其左侧的所有元素都不可能是我们要找的最右侧的x
(它们要么是更小的值,要么是x
但不是最右侧的)。因此,我们需要向右继续搜索,调整左边界为mid
。
为何不使用q[mid] < x
使用q[mid] < x
来调整左边界可能会错过目标值x
的最右侧位置。当q[mid]
正好等于x
时,我们希望继续探索右侧可能存在的更右侧的x
。如果我们仅在q[mid]
小于x
时向右移动,那么就会在找到第一个x
时停止搜索,从而错过了数组中后续的x
。
当寻找左边界时,mid
通常计算为(l + r) >> 1
,即(l + r) / 2
的下取整。这种方式的目的是在左右边界不断逼近时,能够偏向左侧,确保不会错过最左侧的目标值。特别是当l
和r
相邻时,这种计算方法能保证mid
等于l
,避免跳过搜索范围内的最左侧元素。
- 防止无限循环:使用
(l + r) >> 1
在更新右边界r = mid
时,由于取整的方式,可以保证r
向左移动,这避免了在特定条件下可能发生的无限循环。
寻找右边界时,mid
计算为(l + r + 1) >> 1
,即(l + r + 1) / 2
的下取整。这里加1的目的是为了在计算中点时向上取整,当l
和r
相邻时,能够让mid
等于r
,确保搜索范围向右移动,从而能够覆盖到最右侧的目标值。
- 防止无限循环:在更新左边界
l = mid
时,由于向上取整,可以保证l
向右移动,这同样避免了可能的无限循环。特别是在l
和r
非常接近时,如果仍然使用(l + r) >> 1
作为mid
的计算方式,则可能导致l
无法向右逼近,从而陷入无限循环。
模板
bool check(int x) {/* ... */} // 检查x是否满足某种性质// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{while (l < r){int mid = l + r >> 1;if (check(mid)) r = mid; // check()判断mid是否满足性质else l = mid + 1;}return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{while (l < r){int mid = l + r + 1 >> 1;if (check(mid)) l = mid;else r = mid - 1;}return l;
}
这篇关于AcWing 789. 数的范围——算法基础课题解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!