AcWing 789. 数的范围——算法基础课题解

2024-04-07 16:44

本文主要是介绍AcWing 789. 数的范围——算法基础课题解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AcWing 789. 数的范围

题目描述

给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。

对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 00 开始计数)。

如果数组中不存在该元素,则返回 -1 -1

输入格式

第一行包含整数 n 和 q,表示数组长度和询问个数。

第二行包含 n 个整数(均在 1∼10000 范围内),表示完整数组。

接下来 q 行,每行包含一个整数 k,表示一个询问元素。

输出格式

共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回 -1 -1

数据范围

1≤n≤100000
1≤q≤10000
1≤k≤10000

输入样例

6 3
1 2 2 3 3 4
3
4
5

输出样例

3 4
5 5
-1 -1
C++
#include <iostream>using namespace std;const int N = 1e5 + 10;int main() {int n, q;int a[N];cin >> n >> q;for (int i = 0; i < n; i++) cin >> a[i];while (q--) {int x;cin >> x;int l = 0, r = n - 1;while (l < r) {int mid = (l + r) >> 1;if (a[mid] >= x) r = mid;else l = mid + 1;}if (a[l] != x) cout << "-1 -1" << endl;else {cout << l << " ";l = 0, r = n - 1;while (l < r) {int mid = (l + r + 1) >> 1;if (a[mid] <= x) l = mid;else r = mid - 1;}cout << l << endl;}}
}
Go
package mainimport "fmt"const N = 1e5 + 10func main() {var n, q intvar a [N]intfmt.Scanf("%d%d", &n, &q)for i := 0; i < n; i++ {fmt.Scanf("%d", &a[i])}for i := q; i > 0; i-- {var x intfmt.Scanf("%d", &x)l := 0r := n - 1for l < r {mid := (l + r) / 2if a[mid] >= x {r = mid} else {l = mid + 1}}if a[l] != x {fmt.Println("-1 -1")} else {fmt.Print(l, " ")l = 0r = n - 1for l < r {mid := (l + r + 1) / 2if a[mid] <= x {l = mid} else {r = mid - 1}}fmt.Println(l)}}
}
思路

寻找左边界使用q[mid] >= x的逻辑

当我们使用q[mid] >= x条件时,意味着每当中间元素的值大于等于目标值时,我们都将搜索范围的右边界调整为mid。这样做的效果是:

  1. 如果q[mid]等于x,那么这个位置可能是x的最左侧出现位置,但我们还需要继续向左搜索,以确认是否有更左侧的x。因此,我们将右边界调整为mid,以缩小搜索范围,继续向左侧寻找。
  2. 如果q[mid]大于x,即使这个值不是我们要找的,它仍然表明x(如果存在)必定在mid的左侧,因此我们同样需要将右边界调整为mid,以排除右侧的非目标区域。

为何不使用q[mid] > x

如果我们使用q[mid] > x来决定是否调整右边界,则当q[mid]恰好等于x时,我们会继续在右侧半区间搜索,这将错过最左侧的x,因为我们没有排除中间元素即使它等于x

寻找右边界使用q[mid] <= x的逻辑

  1. q[mid]等于x:即使我们找到了一个x,我们仍需要确定这是否是最右侧的x。因此,我们将左边界l调整为mid,而不是结束搜索。这样可以保证如果存在多个x,我们最终能找到最右边的一个。搜索继续在当前找到的x的右侧进行,因为左边的x已经不影响结果了。
  2. q[mid]小于x:这意味着mid及其左侧的所有元素都不可能是我们要找的最右侧的x(它们要么是更小的值,要么是x但不是最右侧的)。因此,我们需要向右继续搜索,调整左边界为mid

为何不使用q[mid] < x

使用q[mid] < x来调整左边界可能会错过目标值x的最右侧位置。当q[mid]正好等于x时,我们希望继续探索右侧可能存在的更右侧的x。如果我们仅在q[mid]小于x时向右移动,那么就会在找到第一个x时停止搜索,从而错过了数组中后续的x

当寻找左边界时mid通常计算为(l + r) >> 1,即(l + r) / 2的下取整。这种方式的目的是在左右边界不断逼近时,能够偏向左侧,确保不会错过最左侧的目标值。特别是当lr相邻时,这种计算方法能保证mid等于l,避免跳过搜索范围内的最左侧元素。

  • 防止无限循环:使用(l + r) >> 1在更新右边界r = mid时,由于取整的方式,可以保证r向左移动,这避免了在特定条件下可能发生的无限循环。

寻找右边界时mid计算为(l + r + 1) >> 1,即(l + r + 1) / 2的下取整。这里加1的目的是为了在计算中点时向上取整,当lr相邻时,能够让mid等于r,确保搜索范围向右移动,从而能够覆盖到最右侧的目标值。

  • 防止无限循环:在更新左边界l = mid时,由于向上取整,可以保证l向右移动,这同样避免了可能的无限循环。特别是在lr非常接近时,如果仍然使用(l + r) >> 1作为mid的计算方式,则可能导致l无法向右逼近,从而陷入无限循环。
模板
bool check(int x) {/* ... */} // 检查x是否满足某种性质// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{while (l < r){int mid = l + r >> 1;if (check(mid)) r = mid;    // check()判断mid是否满足性质else l = mid + 1;}return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{while (l < r){int mid = l + r + 1 >> 1;if (check(mid)) l = mid;else r = mid - 1;}return l;
}

这篇关于AcWing 789. 数的范围——算法基础课题解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883125

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ