语义分割离线数据增强——Albumentations实现

2024-04-07 16:28

本文主要是介绍语义分割离线数据增强——Albumentations实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

该脚本实现了一个图像及其对应掩模的离线数据增强流程,旨在通过引入多种变换增强图像多样性,以提高深度学习模型的泛化能力。主要技术要点如下:

1.使用 Albumentations 库进行数据增强

:Albumentations 是一个强大的 Python 库,专门用于图像预处理和数据增强。它提供了丰富的图像变换操作,支持多种深度学习框架。在本脚本中,通过定义 A.Compose 对象 aug 集成了多种增强操作。

2.定义增强配置:

A.HorizontalFlip(p=0.8) 和 A.VerticalFlip(p=0.7):分别以 80% 和 70% 的概率水平翻转和垂直翻转图像及掩模,增加图像的方向性变化。
A.Resize(height=512, width=512, interpolation=cv.INTER_CUBIC, always_apply=False, p=1):始终将图像和掩模统一缩放到 512x512 大小,使用三次插值法保持图像质量。
A.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=15, p=0.8):以 80% 的概率对图像和掩模进行随机平移(最大移动图像尺寸的 1/16)、缩放(最大放大20%或缩小至80%)和旋转(最大±15度),模拟真实世界中的视角变化和物体位置、大小的差异。
A.Transpose(always_apply=False, p=1):始终对图像和掩模进行转置(水平与垂直方向交换),增加图像的空间布局变化。
A.GridDistortion(num_steps=10, distort_limit=0.3, border_mode=cv.BORDER_CONSTANT, always_apply=False, p=1):始终对图像和掩模应用网格失真变形,模拟镜头畸变或物体表面不规则情况。

3.数据集准备与目录结构:

image_dir、mask_dir 存储原始图像和掩模文件,分别对应图像和其对应的彩色掩模。
aug_image_dir、aug_mask_dir 分别为增强后图像和掩模的输出目录,确保其存在并创建(若不存在)。

4.遍历图像与掩模文件:

从 image_dir 和 mask_dir 中获取相同数量的图像和掩模文件列表,确保二者一一对应。
使用 zip 函数同时遍历 image_files 和 mask_files,对每一对图像和掩模进行后续处理。

5.生成增强版本:

读取指定路径下的原始图像和彩色掩模。
对每对图像-掩模组合应用增强配置 aug 进行100次随机增强。
从增强结果中提取增强后的图像 image_aug 和掩模 mask_aug。

6.保存增强结果:

构建增强后图像和掩模的新文件名,格式为原始文件名(去除扩展名)+ 序号(0~99)+ 扩展名(.jpg 或 .png)。将增强后的图像和掩模保存到对应的输出目录 aug_image_dir 和 aug_mask_dir。

总之,此脚本利用 Albumentations 库对给定图像及其彩色掩模进行一系列几何变换和像素级失真操作,生成大量增强后的图像-掩模对,旨在提升模型训练时的数据多样性,进而增强模型的泛化能力。每个原始图像-掩模对将产生100个不同的增强版本,增强了数据集的规模和复杂性。

import os
import cv2 as cv
import albumentations as A# 定义增强配置
aug = A.Compose([A.HorizontalFlip(p=0.8),A.VerticalFlip(p=0.7),A.Resize(height=512, width=512, interpolation=cv.INTER_CUBIC, always_apply=False, p=1),A.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=15, p=0.8),A.Transpose(always_apply=False, p=1),A.GridDistortion(num_steps=10, distort_limit=0.3, border_mode=cv.BORDER_CONSTANT, always_apply=False, p=1),
])# load dataset
image_dir = './dataset/image'
mask_dir = './dataset/mask'
aug_image_dir = './aug/image'
aug_mask_dir = './aug/mask'# 确保输出目录存在
os.makedirs(aug_image_dir, exist_ok=True)
os.makedirs(aug_mask_dir, exist_ok=True)# 获取图像和掩模文件列表
image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg') or f.endswith('.png')]
mask_files = [f for f in os.listdir(mask_dir) if f.endswith('.jpg') or f.endswith('.png')]assert len(image_files) == len(mask_files), "Number of images and masks don't match"for image_file, mask_file in zip(image_files, mask_files):# 读取原始图像和掩模image_path = os.path.join(image_dir, image_file)mask_path = os.path.join(mask_dir, mask_file)image = cv.imread(image_path)mask = cv.imread(mask_path, cv.IMREAD_COLOR)  # 读取彩色掩模# 为当前图像和掩模生成多个增强版本(共100个)for i in range(100):augmented = aug(image=image, mask=mask)image_aug = augmented["image"]mask_aug = augmented["mask"]# 为增强结果构建新的文件名output_image_name = f'{image_file[:-4]}_{i}.jpg'  # 假设原始图像为 .jpg 格式output_mask_name = f'{mask_file[:-4]}_{i}.png'  # 假设原始掩模为 .png 格式# 保存增强后的图像和掩模output_image_path = os.path.join(aug_image_dir, output_image_name)output_mask_path = os.path.join(aug_mask_dir, output_mask_name)cv.imwrite(output_image_path, image_aug)cv.imwrite(output_mask_path, mask_aug)

这篇关于语义分割离线数据增强——Albumentations实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883087

相关文章

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一