语义分割离线数据增强——Albumentations实现

2024-04-07 16:28

本文主要是介绍语义分割离线数据增强——Albumentations实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

该脚本实现了一个图像及其对应掩模的离线数据增强流程,旨在通过引入多种变换增强图像多样性,以提高深度学习模型的泛化能力。主要技术要点如下:

1.使用 Albumentations 库进行数据增强

:Albumentations 是一个强大的 Python 库,专门用于图像预处理和数据增强。它提供了丰富的图像变换操作,支持多种深度学习框架。在本脚本中,通过定义 A.Compose 对象 aug 集成了多种增强操作。

2.定义增强配置:

A.HorizontalFlip(p=0.8) 和 A.VerticalFlip(p=0.7):分别以 80% 和 70% 的概率水平翻转和垂直翻转图像及掩模,增加图像的方向性变化。
A.Resize(height=512, width=512, interpolation=cv.INTER_CUBIC, always_apply=False, p=1):始终将图像和掩模统一缩放到 512x512 大小,使用三次插值法保持图像质量。
A.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=15, p=0.8):以 80% 的概率对图像和掩模进行随机平移(最大移动图像尺寸的 1/16)、缩放(最大放大20%或缩小至80%)和旋转(最大±15度),模拟真实世界中的视角变化和物体位置、大小的差异。
A.Transpose(always_apply=False, p=1):始终对图像和掩模进行转置(水平与垂直方向交换),增加图像的空间布局变化。
A.GridDistortion(num_steps=10, distort_limit=0.3, border_mode=cv.BORDER_CONSTANT, always_apply=False, p=1):始终对图像和掩模应用网格失真变形,模拟镜头畸变或物体表面不规则情况。

3.数据集准备与目录结构:

image_dir、mask_dir 存储原始图像和掩模文件,分别对应图像和其对应的彩色掩模。
aug_image_dir、aug_mask_dir 分别为增强后图像和掩模的输出目录,确保其存在并创建(若不存在)。

4.遍历图像与掩模文件:

从 image_dir 和 mask_dir 中获取相同数量的图像和掩模文件列表,确保二者一一对应。
使用 zip 函数同时遍历 image_files 和 mask_files,对每一对图像和掩模进行后续处理。

5.生成增强版本:

读取指定路径下的原始图像和彩色掩模。
对每对图像-掩模组合应用增强配置 aug 进行100次随机增强。
从增强结果中提取增强后的图像 image_aug 和掩模 mask_aug。

6.保存增强结果:

构建增强后图像和掩模的新文件名,格式为原始文件名(去除扩展名)+ 序号(0~99)+ 扩展名(.jpg 或 .png)。将增强后的图像和掩模保存到对应的输出目录 aug_image_dir 和 aug_mask_dir。

总之,此脚本利用 Albumentations 库对给定图像及其彩色掩模进行一系列几何变换和像素级失真操作,生成大量增强后的图像-掩模对,旨在提升模型训练时的数据多样性,进而增强模型的泛化能力。每个原始图像-掩模对将产生100个不同的增强版本,增强了数据集的规模和复杂性。

import os
import cv2 as cv
import albumentations as A# 定义增强配置
aug = A.Compose([A.HorizontalFlip(p=0.8),A.VerticalFlip(p=0.7),A.Resize(height=512, width=512, interpolation=cv.INTER_CUBIC, always_apply=False, p=1),A.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=15, p=0.8),A.Transpose(always_apply=False, p=1),A.GridDistortion(num_steps=10, distort_limit=0.3, border_mode=cv.BORDER_CONSTANT, always_apply=False, p=1),
])# load dataset
image_dir = './dataset/image'
mask_dir = './dataset/mask'
aug_image_dir = './aug/image'
aug_mask_dir = './aug/mask'# 确保输出目录存在
os.makedirs(aug_image_dir, exist_ok=True)
os.makedirs(aug_mask_dir, exist_ok=True)# 获取图像和掩模文件列表
image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg') or f.endswith('.png')]
mask_files = [f for f in os.listdir(mask_dir) if f.endswith('.jpg') or f.endswith('.png')]assert len(image_files) == len(mask_files), "Number of images and masks don't match"for image_file, mask_file in zip(image_files, mask_files):# 读取原始图像和掩模image_path = os.path.join(image_dir, image_file)mask_path = os.path.join(mask_dir, mask_file)image = cv.imread(image_path)mask = cv.imread(mask_path, cv.IMREAD_COLOR)  # 读取彩色掩模# 为当前图像和掩模生成多个增强版本(共100个)for i in range(100):augmented = aug(image=image, mask=mask)image_aug = augmented["image"]mask_aug = augmented["mask"]# 为增强结果构建新的文件名output_image_name = f'{image_file[:-4]}_{i}.jpg'  # 假设原始图像为 .jpg 格式output_mask_name = f'{mask_file[:-4]}_{i}.png'  # 假设原始掩模为 .png 格式# 保存增强后的图像和掩模output_image_path = os.path.join(aug_image_dir, output_image_name)output_mask_path = os.path.join(aug_mask_dir, output_mask_name)cv.imwrite(output_image_path, image_aug)cv.imwrite(output_mask_path, mask_aug)

这篇关于语义分割离线数据增强——Albumentations实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883087

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函