基于卷积神经网络的大米品种分类系统(pytorch框架)【python源码+UI界面+前端界面+功能源码详解】

本文主要是介绍基于卷积神经网络的大米品种分类系统(pytorch框架)【python源码+UI界面+前端界面+功能源码详解】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 功能演示:

大米品种分类系统,基于vgg16,resnet50卷积神经网络(pytorch框架)_哔哩哔哩_bilibili

(一)简介

基于卷积神经网络的大米品种分类系统是在pytorch框架下实现的,系统中有两个模型可选resnet50模型和VGG16模型,这两个模型可用于模型效果对比。该系统涉及的技术栈有,UI界面:python + pyqt5,前端界面:python flask + vue  

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:


超详细的pycharm+anaconda搭建python虚拟环境_pycharm配置anaconda虚拟环境-CSDN博客

pycharm+anaconda搭建python虚拟环境_哔哩哔哩_bilibili

(二)项目介绍

1. pycharm打开项目界面如下

2. 数据集 

3.GUI界面(技术栈:pyqt5+python) 

4.前端界面(技术栈:python+flask)

5. 核心代码 
class MainProcess:def __init__(self, train_path, test_path, model_name):self.train_path = train_pathself.test_path = test_pathself.model_name = model_nameself.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")def main(self, epochs):# 记录训练过程log_file_name = './results/vgg16训练和验证过程.txt'# 记录正常的 print 信息sys.stdout = Logger(log_file_name)print("using {} device.".format(self.device))# 开始训练,记录开始时间begin_time = time()# 加载数据train_loader, validate_loader, class_names, train_num, val_num = self.data_load()print("class_names: ", class_names)train_steps = len(train_loader)val_steps = len(validate_loader)# 加载模型model = self.model_load()  # 创建模型# 网络结构可视化x = torch.randn(16, 3, 224, 224)  # 随机生成一个输入model_visual_path = 'results/vgg16_visual.onnx'  # 模型结构保存路径torch.onnx.export(model, x, model_visual_path)  # 将 pytorch 模型以 onnx 格式导出并保存# netron.start(model_visual_path)  # 浏览器会自动打开网络结构# load pretrain weights# download url: https://download.pytorch.org/models/vgg16-397923af.pthmodel_weight_path = "models/vgg16-pre.pth"assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)model.load_state_dict(torch.load(model_weight_path, map_location='cpu'))# 更改Vgg16模型的最后一层model.classifier[-1] = nn.Linear(4096, len(class_names), bias=True)# 将模型放入GPU中model.to(self.device)# 定义损失函数loss_function = nn.CrossEntropyLoss()# 定义优化器params = [p for p in model.parameters() if p.requires_grad]optimizer = optim.Adam(params=params, lr=0.0001)train_loss_history, train_acc_history = [], []test_loss_history, test_acc_history = [], []best_acc = 0.0for epoch in range(0, epochs):# 下面是模型训练model.train()running_loss = 0.0train_acc = 0.0train_bar = tqdm(train_loader, file=sys.stdout)# 进来一个batch的数据,计算一次梯度,更新一次网络for step, data in enumerate(train_bar):images, labels = data  # 获取图像及对应的真实标签optimizer.zero_grad()  # 清空过往梯度outputs = model(images.to(self.device))  # 得到预测的标签train_loss = loss_function(outputs, labels.to(self.device))  # 计算损失train_loss.backward()  # 反向传播,计算当前梯度optimizer.step()  # 根据梯度更新网络参数# print statisticsrunning_loss += train_loss.item()predict_y = torch.max(outputs, dim=1)[1]  # 每行最大值的索引# torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回Falsetrain_acc += torch.eq(predict_y, labels.to(self.device)).sum().item()train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,epochs,train_loss)# 下面是模型验证model.eval()  # 不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化val_acc = 0.0  # accumulate accurate number / epochtesting_loss = 0.0with torch.no_grad():  # 张量的计算过程中无需计算梯度val_bar = tqdm(validate_loader, file=sys.stdout)for val_data in val_bar:val_images, val_labels = val_dataoutputs = model(val_images.to(self.device))val_loss = loss_function(outputs, val_labels.to(self.device))  # 计算损失testing_loss += val_loss.item()predict_y = torch.max(outputs, dim=1)[1]  # 每行最大值的索引# torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回Falseval_acc += torch.eq(predict_y, val_labels.to(self.device)).sum().item()train_loss = running_loss / train_stepstrain_accurate = train_acc / train_numtest_loss = testing_loss / val_stepsval_accurate = val_acc / val_numtrain_loss_history.append(train_loss)train_acc_history.append(train_accurate)test_loss_history.append(test_loss)test_acc_history.append(val_accurate)print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %(epoch + 1, train_loss, val_accurate))if val_accurate > best_acc:best_acc = val_accuratetorch.save(model.state_dict(), self.model_name)# 记录结束时间end_time = time()run_time = end_time - begin_timeprint('该循环程序运行时间:', run_time, "s")# 绘制模型训练过程图self.show_loss_acc(train_loss_history, train_acc_history,test_loss_history, test_acc_history)# 画热力图self.heatmaps(model, validate_loader, class_names)

该系统可以训练自己的数据集,训练过程也比较简单,只需指定自己数据集中训练集和测试集的路径,训练后模型名称和指定训练的轮数即可 

训练结束后可输出以下结果:
a. 训练过程的损失曲线

 b. 模型训练过程记录,模型每一轮训练的损失和精度数值记录

c. 模型结构

模型评估可输出:
a. 混淆矩阵

b. 测试过程和精度数值

(三)资源获取方式

编码不易,源码有偿获取喔!

资源主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面、前端界面。欢迎大家咨询! 

这篇关于基于卷积神经网络的大米品种分类系统(pytorch框架)【python源码+UI界面+前端界面+功能源码详解】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879694

相关文章

基于Python编写一个git自动上传的脚本(打包成exe)

《基于Python编写一个git自动上传的脚本(打包成exe)》这篇文章主要为大家详细介绍了如何基于Python编写一个git自动上传的脚本并打包成exe,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录前言效果如下源码实现利用pyinstaller打包成exe利用ResourceHacker修改e

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

Python中Tkinter GUI编程详细教程

《Python中TkinterGUI编程详细教程》Tkinter作为Python编程语言中构建GUI的一个重要组件,其教程对于任何希望将Python应用到实际编程中的开发者来说都是宝贵的资源,这篇文... 目录前言1. Tkinter 简介2. 第一个 Tkinter 程序3. 窗口和基础组件3.1 创建窗

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

Springboot配置文件相关语法及读取方式详解

《Springboot配置文件相关语法及读取方式详解》本文主要介绍了SpringBoot中的两种配置文件形式,即.properties文件和.yml/.yaml文件,详细讲解了这两种文件的语法和读取方... 目录配置文件的形式语法1、key-value形式2、数组形式读取方式1、通过@value注解2、通过

浅析python如何去掉字符串中最后一个字符

《浅析python如何去掉字符串中最后一个字符》在Python中,字符串是不可变对象,因此无法直接修改原字符串,但可以通过生成新字符串的方式去掉最后一个字符,本文整理了三种高效方法,希望对大家有所帮助... 目录方法1:切片操作(最推荐)方法2:长度计算索引方法3:拼接剩余字符(不推荐,仅作演示)关键注意事

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller