[C#]OpenCvSharp使用帧差法或者三帧差法检测移动物体

2024-04-06 09:36

本文主要是介绍[C#]OpenCvSharp使用帧差法或者三帧差法检测移动物体,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于C++版本帧差法可以参考博客

[C++]OpenCV基于帧差法的运动检测-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/FL1768317420/article/details/137397811?spm=1001.2014.3001.5501

我们将参考C++版本转成opencvsharp版本。

帧差法,也叫做帧间差分法,这里引用百度百科上的一段定义:

帧间差分法是一种通过对视频图像序列中相邻两帧作差分运算来获得运动目标轮廓的方法,它可以很好地适用于存在多个运动目标和摄像机移动的情况。当监控场景中出现异常物体运动时,帧与帧之间会出现较为明显的差别,两帧相减,得到两帧图像亮度差的绝对值,判断它是否大于阈值来分析视频或图像序列的运动特性,确定图像序列中有无物体运动。图像序列逐帧的差分,相当于对图像序列进行了时域下的高通滤波。

最简单的帧差法就是二帧差分法,将视频流中的前后两帧图像转换为灰度图像,再经过高斯模糊消除噪声干扰,然后将两帧图像进行相减操作得到两帧图像之间的差异区域,再对差异图像进行二值分割把差异区域作为前景、不变区域作为背景,并且进行开运算操作来消除一些微小干扰。这样,就得到了两帧图像中明显不同的区域,也就是运动的目标物体。下面对上述博客C++版本做解读:

这段C++ OpenCV代码实现了一个简单的运动检测算法,采用两帧差法来识别视频中的运动区域。以下是代码逐段解读:1. 初始化视频捕获器VideoCapture capture;
capture.open("D:\\opencv_c++\\opencv_tutorial\\data\\images\\bike.avi");
这段代码创建了一个VideoCapture对象capture,用于打开和读取视频文件。这里尝试打开位于指定路径的bike.avi视频文件。2. 检查视频是否成功打开if (!capture.isOpened())
{return 0;
}
使用capture.isOpened()检查视频文件是否成功打开。如果未能成功打开(返回false),则立即结束程序并返回值0。3. 定义所需图像变量Mat pre_frame, current_frame, pre_gray, current_gray, pre_gaus, current_gaus;
定义一系列Mat对象(OpenCV中的多通道图像容器),用于存储不同处理阶段的图像数据:pre_frame 和 current_frame 分别存储前一帧和当前帧的彩色图像。
pre_gray 和 current_gray 存储对应的灰度图像。
pre_gaus 和 current_gaus 存储经过高斯模糊处理的灰度图像。
4. 读取第一帧并进行预处理capture.read(pre_frame);
cvtColor(pre_frame, pre_gray, COLOR_BGR2GRAY);
GaussianBlur(pre_gray, pre_gaus, Size(), 5, 5);
首先从视频中读取第一帧到pre_frame。接着,使用cvtColor函数将其转换为灰度图像并存储在pre_gray中。最后,对pre_gray应用高斯模糊(核大小为5x5),结果存放在pre_gaus。5. 循环处理后续帧while (capture.read(current_frame))
{// ... 处理代码 ...
}
进入主循环,每次迭代从视频中读取下一帧至current_frame。当无法再读取到新帧时(即视频播放完毕),循环结束。6. 当前帧预处理cvtColor(current_frame, current_gray, COLOR_BGR2GRAY);
GaussianBlur(current_gray, current_gaus, Size(), 5, 5);
对当前帧执行与第一帧相同的预处理步骤:转换为灰度图像(current_gray)并应用高斯模糊(current_gaus)。7. 计算两帧差分Mat sub_gray, sub_binary, sub_open;
subtract(current_gaus, pre_gaus, sub_gray);
threshold(sub_gray, sub_binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
计算current_gaus与pre_gaus之间的像素差值,结果存储在sub_gray。然后,对sub_gray应用二值化阈值处理(包括Otsu自适应阈值),得到运动区域的二值图像sub_binary。8. 形态学开运算Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5));
morphologyEx(sub_binary, sub_open, MORPH_OPEN, kernel, Point(-1, -1), 1, 0);
创建一个大小为5x5的矩形结构元素kernel。接着,对sub_binary进行形态学开运算(去除小噪声),输出结果保存在sub_open。9. 显示结果imshow("sub_open", sub_open);
imshow("current_frame", current_frame);
使用imshow函数分别显示运动区域检测结果sub_open和当前帧原始彩色图像current_frame。10. 更新前一帧信息cpp
swap(pre_gaus, current_gaus);
使用swap函数交换pre_gaus和current_gaus的内容,使得pre_gaus存储当前帧高斯模糊后的灰度图像,为下一次循环做好准备。11. 检查用户输入以决定是否退出char ch = cv::waitKey(20);
if (ch == 27)
{break;
}
waitKey(20)函数等待用户按键,同时设置超时时间为20毫秒。若在该时间内接收到按键事件,返回按键的ASCII码;否则返回-1。这里检查是否按下Esc键(ASCII码为27),如果是,则跳出循环,结束视频处理。综上所述,这段代码实现了基于两帧差法的运动检测算法,通过对连续视频帧进行灰度化、高斯模糊、差分、二值化、形态学开运算等步骤,提取出运动区域并在窗口中实时显示,同时允许用户按Esc键随时停止处理。

三帧差分法是将连续的三帧图像,分别进行转灰度图、高斯模糊消除噪声干扰,然后进行逐帧相减,也就是后一帧图像减去当前帧图像、当前帧图像减去前一帧图像,从而得到两张差异图像。再将得到的两个差值图像进行与操作,得到共同的差异区域,最后通过开运算操作消除微小干扰。这样就得到了三帧图像间的明显差异区域,也就是运动的目标物体。

而且二帧差分法对于微小运动物体的检测能力比较差,因为如果在两帧图像之间变化太小,就很难被检测出来。而三帧差分法利用连续三帧图像的差异结果,能够提高对微小运动物体的检测能力,同时增强对噪声、光照等因素的抗干扰能力。以下是对C++代码解读:

这段C++ OpenCV代码同样实现了一个基于两帧差法的运动检测算法,但与之前提供的代码相比,它采用了双缓冲机制,即同时保留两前一帧的信息,以增强对运动检测的稳定性。以下是详细解读:1. 初始化视频捕获器cpp
VideoCapture capture;
capture.open("D:\\opencv_c++\\opencv_tutorial\\data\\images\\bike.avi");
创建一个VideoCapture对象capture,用于打开并读取视频文件。这里尝试打开位于指定路径的bike.avi视频文件。2. 检查视频是否成功打开cpp
if (!capture.isOpened())
{return 0;
}
使用capture.isOpened()检查视频文件是否成功打开。如果未能成功打开(返回false),则立即结束程序并返回值0。3. 定义所需图像变量cpp
Mat pre_frame1, pre_frame2, current_frame,pre_gray1, pre_gray2, current_gray,pre_gaus1, pre_gaus2, current_gaus;
定义一系列Mat对象,用于存储不同处理阶段的图像数据:pre_frame1 和 pre_frame2 分别存储最近两帧的彩色图像。
current_frame 存储当前帧的彩色图像。
pre_gray1 和 pre_gray2 存储对应的灰度图像。
current_gray 存储当前帧的灰度图像。
pre_gaus1 和 pre_gaus2 存储最近两帧经过高斯模糊处理的灰度图像。
current_gaus 存储当前帧经过高斯模糊处理的灰度图像。
4. 读取前两帧并进行预处理cpp
capture.read(pre_frame1);
capture.read(pre_frame2);cvtColor(pre_frame1, pre_gray1, COLOR_BGR2GRAY);
cvtColor(pre_frame2, pre_gray2, COLOR_BGR2GRAY);GaussianBlur(pre_gray1, pre_gaus1, Size(), 10, 0);
GaussianBlur(pre_gray2, pre_gaus2, Size(), 10, 0);
从视频中读取前两帧分别存入pre_frame1和pre_frame2。对这两帧进行灰度化处理后分别存储在pre_gray1和pre_gray2,接着对灰度图像应用高斯模糊(核大小为10x10),结果分别存放在pre_gaus1和pre_gaus2。5. 主循环处理后续帧cpp
while (capture.read(current_frame))
{// ... 处理代码 ...
}
进入主循环,每次迭代从视频中读取下一帧至current_frame。当无法再读取到新帧时(即视频播放完毕),循环结束。6. 当前帧预处理cpp
cvtColor(current_frame, current_gray, COLOR_BGR2GRAY);
GaussianBlur(current_gray, current_gaus, Size(), 10, 0);
对当前帧执行与前两帧相同的预处理步骤:转换为灰度图像(current_gray)并应用高斯模糊(current_gaus)。7. 计算两帧差分cpp
Mat diff1, diff2, diff;subtract(pre_gaus2, pre_gaus1, diff1);
subtract(current_gaus, pre_gaus2, diff2);
计算pre_gaus2与pre_gaus1以及current_gaus与pre_gaus2之间的像素差值,结果分别存储在diff1和diff2。8. 差分图像二值化cpp
Mat diff1_binary, diff2_binary;threshold(diff1, diff1_binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
threshold(diff2, diff2_binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
对diff1和diff2分别应用二值化阈值处理(包括Otsu自适应阈值),得到运动区域的二值图像diff1_binary和diff2_binary。9. 逻辑与操作合并差分结果cpp
bitwise_and(diff1_binary, diff2_binary, diff);
对diff1_binary和diff2_binary进行逻辑与(AND)操作,仅保留两者都为运动区域的像素,生成更稳定的运动检测结果,存储在diff中。10. 形态学开运算cpp
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
morphologyEx(diff, diff, MORPH_OPEN, kernel, Point(-1, -1), 1, 0);
创建一个大小为3x3的矩形结构元素kernel。接着,对diff进行形态学开运算(去除小噪声),输出结果仍保存在diff。11. 显示结果cpp
imshow("diff", diff);
imshow("current_frame", current_frame);
使用imshow函数分别显示运动区域检测结果diff和当前帧原始彩色图像current_frame。12. 更新前两帧信息cpp
pre_gaus1 = pre_gaus2.clone();
pre_gaus2 = current_gaus.clone();
使用clone函数复制pre_gaus2和current_gaus的内容,使得pre_gaus1和pre_gaus2分别存储前两帧高斯模糊后的灰度图像,为下一次循环做好准备。13. 检查用户输入以决定是否退出cpp
char ch = cv::waitKey(20);
if (ch == 27)
{break;
}
waitKey(20)函数等待用户按键,同时设置超时时间为20毫秒。若在该时间内接收到按键事件,返回按键的ASCII码;否则返回-1。这里检查是否按下Esc键(ASCII码为27),如果是,则跳出循环,结束视频处理。总结:这段代码通过双缓冲机制(同时保留两前一帧信息)实现了一种改进的基于两帧差法的运动检测算法。算法流程包括读取帧、预处理、差分计算、二值化、逻辑与操作、形态学开运算等步骤,最终提取出稳定运动区域并在窗口中实时显示,同时允许用户按Esc键随时停止处理。

知道上面步骤我们可以很轻松翻译成opencvsharp代码

【效果展示】

【测试环境】

vs2019,netframework4.7.2,opencvsharp4.8.0

【opencvsharp演示代码下载地址】 

https://download.csdn.net/download/FL1623863129/89085049

这篇关于[C#]OpenCvSharp使用帧差法或者三帧差法检测移动物体的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879594

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,