初识人工智能---------自然语言处理词袋模型

2024-04-05 03:28

本文主要是介绍初识人工智能---------自然语言处理词袋模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.自然语言处理(NLP)

自然语言处理(Natural Language Processing,简称NLP)研究的是如何通过机器学习等技术,让计算机学会处理自然(人类)语言,以完成有意义的任务。

下面是一些常见的日常生活应用:

1. 邮件过滤:

系统会根据电子邮件的内容识别电子邮件是否属于三个类别(重要、社交或广告)之一,或者判断一封邮件是否是垃圾邮件。此时就是通过NLP来对这些邮件进行一系列的分类。

2. 搜索引擎,如百度、谷歌等。

在我们输入2-3个字后,搜索引擎会显示可能的搜索词。或者如果输入了错别字,搜索引擎会自动进行更正。

这就是通过NLP技术来实现的搜索自动完成和自动更正功能,帮助我们更有效地找到准确的结果;

3. 机器翻译,比如Google、有道翻译。

目前所追求的翻译,不再仅仅是通过计算机直接将一种语言转换为另一种语言,而是需要像人类一样能够理解世界知识和上下文。

要让电脑像人类一样理解自然语言,必然离不开NLP技术。

4. 语音助理,比如Siri、智能音箱等。

现在的语音助理,与人类之间的交流不再是简单的你问我答,不少语音助手甚至能和人类进行深度交谈。

同样在这背后离不开NLP技术,使得语音助理能够将人类语言转换为机器语言,然后执行相应的操作。

总结一下,广义上来讲任何处理自然语言的计算机操作都可以被理解为NLP。

2.中文分词

一篇文本是由无数句话组成,而一句话又是由一个个词语组成,因此可以将词语看作是自然语言的基本单位。

对于英文而言,间隔很明显能够判断那个是单个的,但是一句中文的句子应该如何进行判断呢,这个就是分词;现在有技术把中文的词语分隔开,实现分词的目的;

3.词袋模型

对于文本而言,词语出现的频率就可以作为一项特征。那么,词频这个特征就能帮我们提取出关键词。

在进行NLP时,构造词袋模型(Bag-of-Words Model)是一种常用的用于统计词频的技术。

将复杂的词句结构降维成体现主题的词语计数,以便计算机进行后续的处理。

这就是词袋模型的基本思想。

4.读取CSV文件

(1)简介

CSV(Comma-Separated Values)文件以纯文本的形式储存数字、文本等表格数据。

Python提供了一个用于处理CSV文件的模块:csv 模块。由于是内置的模块,直接导入就可以了;

(2)文件的读取

# 导入csv模块
import csv# 使用open()函数打开数据集,并将返回的文件对象存储在变量file中
file = open("/Users/xxxxxxxxxxx", "r")# 使用csv.reader()函数读取数据集,并赋值给变量reader
reader = csv.reader(file)

导入模块---------------打开文件,r表示的是以只读的方式打开文件----------------通过函数读取数据,赋值reader;

5.标准化处理

for info in reader:print(info)

reader对象存储的是CSV文件里所有行数据,相当于每一行数据都作为字符串列表返回。

也就是说reader的每个元素都是字符串列表:为了便于管理,我们把它进行标准化的处理;

1. 先创建一个空列表,用于存储reader对象中的值
2. 使用for循环遍历reader对象
3. 使用append()函数,将reader对象中的每行数据添加到空列表data中

// 创建一个空列表data
data = []// 使用for循环遍历reader,将遍历的数据存储到变量info中
for info in reader:// 使用append()函数,将info逐一添加到data列表中data.append(info)// 输出data
print(data)

这样,data这个列表里面就全是小的列表,data就是一个嵌套列表。

这篇关于初识人工智能---------自然语言处理词袋模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877527

相关文章

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1