【算法复习二】传统基本算法(分治----残缺棋盘问题)

2024-04-05 01:58

本文主要是介绍【算法复习二】传统基本算法(分治----残缺棋盘问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  问题描述:

  残缺棋盘是一个有2k×2kk≥1)个方格的棋盘,其中恰有一个方格残缺。如图给出k=1时各种可能的残缺棋盘,其中残缺的方格用阴影表示。

残缺棋盘问题就是要用这四种三格板覆盖更大的残缺棋盘。在此覆盖中要求:

        1)两个三格板不能重叠

        2)三格板不能覆盖残缺方格,但必须覆盖其他所有的方格。

         

         小格子数(2k×2k -1)三格板中小格子数3。所以所需要的三格板总数为(2k×2k -1 )/3

  例如,一个4*4的残缺棋盘2k*2k

        以k=2时的问题为例,用二分法进行分解,得到的四个k=1的棋盘。但要注意这四个棋盘,并不都是与原问题相似且独立的子问题。

        因为当如图中的残缺方格在左上部时,第1个子问题与原问题相似,而右上角、左下角和右下角三个子棋盘(也就是图中标识为234号子棋盘),并不是原问题的相似子问题,自然也就不能独立求解了。当使用一个①号三格板覆盖234号三个子棋盘的各一个方格后,我们把覆盖后的方格,也看作是残缺方格(称为残缺方格),这时的234号子问题就是独立且与原问题相似的子问题了。

  问题分析

           从以上例子还可以发现

               当残缺方格在第1个子棋盘,用①号三格板覆盖其余三个子棋盘的交界方格,可以使另外三个子棋盘转化为独立子问题;

               当残缺方格在第2个子棋盘时,则首先用②号三格板进行棋盘覆盖

               当残缺方格在第3个子棋盘时,则首先用③号三格板进行棋盘覆盖

               当残缺方格在第4个子棋盘时,则首先用④号三格板进行棋盘覆盖,这样就使另外三个子棋盘转化为独立子问题。

程序代码思路:

         表示方法:每个三格板需要用同一个数字表示,不同三格板编号不同。

源码:

#include <iostream>
#include <iomanip>
using namespace std;
int board[100][100];  //存放棋盘L型的标号数组;
int tile=1;    // L型骨牌号
void chessBoard(int tr, int tc, int dr, int dc, int size)
{ 
if (size==1)
return;
int t = tile++;     // L型骨牌号
int s = size/2;     // 分割棋盘
//________________________________________________ 覆盖左上角子棋盘
if (dr<tr+s&&dc<tc+s)     // 特殊方格在此棋盘中
chessBoard(tr, tc, dr, dc, s);
else                               // 此棋盘中无特殊方格
{           
board[tr+s-1][tc+s-1]=t; // 用 t 号L型骨牌覆盖右下角
chessBoard(tr,tc,tr+s-1, tc+s-1, s);// 覆盖其余方格
} 
//________________________________________________ 覆盖右上角子棋盘
if (dr < tr + s && dc >= tc + s)     // 特殊方格在此棋盘中
chessBoard(tr, tc+s, dr, dc, s);
else                                  // 此棋盘中无特殊方格
{
board[tr + s - 1][tc + s] = t;   //用t号L型骨牌覆盖左下角
chessBoard(tr, tc+s, tr+s-1, tc+s, s);// 覆盖其余方格
}
//_______________________________________________ 覆盖左下角子棋盘
if (dr >= tr + s && dc < tc + s)  // 特殊方格在此棋盘中
chessBoard(tr+s, tc, dr, dc, s);
else                               // 此棋盘中无特殊方格                       
{
board[tr + s][tc + s - 1] = t;  // 用 t 号L型骨牌覆盖右上角
chessBoard(tr+s, tc, tr+s, tc+s-1, s);// 覆盖其余方格
} 
//__________________________________________________ 覆盖右下角子棋盘
if (dr >= tr + s && dc >= tc + s)  // 特殊方格在此棋盘中
chessBoard(tr+s, tc+s, dr, dc, s);
else 
{
board[tr + s][tc + s] = t;     // 用 t 号L型骨牌覆盖左上角       
chessBoard(tr+s, tc+s, tr+s, tc+s, s); // 覆盖其余方格
}
}
int main()
{
int size,dr,dc;
cout<<"\t\t\t棋盘覆盖问题\n";
cout<<"2^k×2^k 个方格变长size(size=2,4,8,16,32,64):";
cin>>size;
cout<<"分别输入特殊块的行下标dr,列下标dc(0-"<<(size-1)<<"):";
cin>>dr>>dc;
board[dr][dc]=0;
cout<<"棋盘覆盖图:\n";
chessBoard(0, 0, dr, dc, size);
int i,j;
for( i=0;i<size;i++)
{
for( j=0;j<size;j++)
cout<<setw(6)<<board[i][j];//setw(6)//输出量不足6个字符时在左面填充空白 
cout<<endl<<endl;
}
return 0;
}


分治递归执行步骤:

         1)chessBoard(0, 0, 0, 0, 4);

               {          t=1;   s=2;

                        chessBoard(0, 0, 0, 0, 2);

                            {        t=2; s=1;

                                     chessBoard(0, 0, 0, 0, 1);

                                          {          s==1

                                                       return  

                                          }

                                                       以下三步

                                                        将左上角 三格板 用t=2覆盖

                               }

                              return

                                      以下三步 对右上递归  先 用t=1 覆盖左下

                                                          左下递归 先 用t=1 覆盖右上

                                                          右下递归 先 用t=1 覆盖左上

                                      递归处理类似。

                  }

                                    

这篇关于【算法复习二】传统基本算法(分治----残缺棋盘问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877378

相关文章

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作