Educational Codeforces Round 133 (Rated for Div. 2) (C dp D前缀和优化倍数关系dp)

2024-04-04 16:44

本文主要是介绍Educational Codeforces Round 133 (Rated for Div. 2) (C dp D前缀和优化倍数关系dp),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A:能用3肯定用三,然后分类讨论即可

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+10,M=2*N,mod=998244353;
#define int long long
typedef long long LL;
typedef pair<int, int> PII;
typedef unsigned long long ULL;
using node=tuple<int,int,int>;
const long long inf=1e18;int n,m,k;
int a[N];void solve()
{cin>>n;if(n==1) cout<<"2\n";else{if(n%3==0) cout<<n/3<<"\n";if(n%3==1) cout<<(n-4)/3+2<<"\n";if(n%3==2) cout<<n/3+1<<"\n";}
}
//1 2 3 4
signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int t=1;cin>>t;while(t--) solve();
}==0==

B:

我们可以构造n个

分别是

n n-2 n-3... 0

因为一开始交换会改变两个,然后后面全都和第一个换就可以保证递减下去了

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+10,M=2*N,mod=998244353;
#define int long long
typedef long long LL;
typedef pair<int, int> PII;
typedef unsigned long long ULL;
using node=tuple<int,int,int>;
const long long inf=1e18;int n,m,k;
int a[N];void solve()
{cin>>n;cout<<1+n-1<<"\n";for(int i=1;i<=n;i++) a[i]=i;//1 2 3 4 4//2 1 3 4 2for(int i=1;i<=n;i++){cout<<a[i]<<" \n"[i==n];}swap(a[1],a[2]);for(int i=2;i<=n;i++){for(int j=1;j<=n;j++){cout<<a[j]<<" \n"[j==n];}swap(a[i+1],a[1]);}
}
//1 2 3 4
signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int t=1;cin>>t;while(t--) solve();
}

C:正常都能想到先蛇形再走U字形

dp预处理当前[i,j]走到[i^1,j]的最长等待时间,然后从当前这个时间可以一路往后走,不停下来,

对于同行的dp=max(dp[i][j]+1,a[i][j])

但是对于新增的[i^1,j]也可能造成时间问题

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+10,M=2*N,mod=998244353;
#define int long long
typedef long long LL;
typedef pair<int, int> PII;
typedef unsigned long long ULL;
using node=tuple<int,int,int>;
const long long inf=1e18;int n,m,k;
int a[3][N];void solve()
{cin>>m;n=2;vector<vector<int>> dp(m + 1, vector<int>(2));for(int i=0;i<n;i++){for(int j=0;j<m;j++)cin>>a[i][j];}a[0][m]=a[1][m]=0;a[0][0]=-1;for(int i=m-1;i>=0;i--){for(int j=0;j<2;j++)dp[i][j]=max({a[j][i]+1,dp[i+1][j]-1,a[j^1][i]-2*(m-i-1)});}int res=inf;array<int,2> pos={0,0};int cur=0;for(int i=0;i<m;i++){res=min(res,max(cur,dp[pos[1]][pos[0]])+2*(m-i)-1);pos[0]^=1;cur=max(a[pos[0]][pos[1]]+1,cur+1);pos[1]++;res=min(res,max(cur,dp[pos[1]][pos[0]])+2*(m-i-1));cur=max(a[pos[0]][pos[1]]+1,cur+1);}cout<<res<<"\n";}
//1 2 3 4
signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int t=1;cin>>t;while(t--) solve();
}

D:

因为 (k+1)*(k)/2<=n,可以推出m等于根号2*n

然后直接前缀和优化dp的倍数和即可

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+10,M=2*N,mod=998244353;typedef long long LL;
typedef pair<int, int> PII;
typedef unsigned long long ULL;
using node=tuple<int,int,int>;
const long long inf=1e18;int n,m,k;
int a[N];
LL res[N];
LL f[2][N],s[N];
void solve()
{cin>>n>>k;f[0][0]=1;m=sqrt(2*n);m++;for(int i=1;i<=m;i++){for(int j=0;j<=n;j++){if(j>=(k+i-1))s[j]=(s[j-(k+i-1)]+f[(i-1)&1][j])%mod;else s[j]=f[(i-1)&1][j];   if(j>=(k+i-1)){f[i&1][j]=(f[i&1][j]+s[j-(k+i-1)])%mod;}}for(int j=0;j<=n;j++){f[(i-1)&1][j]=0;res[j]=(res[j]+f[i&1][j])%mod;}}//(x+1)*(x)/2>=n//x*x>=2*n//max 根号2*n=500for(int i=1;i<=n;i++)cout<<res[i]<<" ";
}
//1 2 3 4
signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int t=1;// cin>>t;while(t--) solve();
}

这篇关于Educational Codeforces Round 133 (Rated for Div. 2) (C dp D前缀和优化倍数关系dp)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876318

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs