看导数和微分历史

2024-04-04 07:48
文章标签 历史 导数 微分

本文主要是介绍看导数和微分历史,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导数和微分历史

1:无穷小量还违反了 阿基米德公理 ,这个才是更严重的缺陷,康托尔证明过,如果阿基米德公理被违背的话会出大问题。
2:一边是看起来没有错的微积分,一边是有严重缺陷的无穷小量,这就是第二次数学危机。
3: 数学的严格性受到了挑战,“对于数学,严格性不是一切,但是没有了严格性就没有了一切”。
4:莱布尼兹、欧拉等都认识到了无穷小量导致的麻烦,一直拼命想要修补,
但是这个问题要等到200年后,19世纪极限概念的清晰之后才得到解决。
5;解决办法是,完全摈弃无穷小量,基于极限的概念,重新建立了微积分。
6:古老定义
6.1;切线:通过无穷小量定义了切线
6.2:导数:导数就是切线的斜率
6.3:微分:微分是微小的增量,即无穷小量

在这里插入图片描述

在这里插入图片描述

7; 基于极限重建微积分
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

“无穷小量”这种东西之于数学,简直就像“以太”之于物理一般。

这篇关于看导数和微分历史的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875210

相关文章

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

从希腊神话到好莱坞大片,人工智能的七大历史时期值得铭记

本文选自historyextra,机器之心编译出品,参与成员:Angulia、小樱、柒柒、孟婷 你可能听过「技术奇点」,即本世纪某个阶段将出现超级智能,那时,技术将会以人类难以想象的速度飞速发展。同样,黑洞也是一个奇点,在其上任何物理定律都不适用;因此,技术奇点也是超越未来理解范围的一点。 然而,在我们到达那个奇点之前(假设我们能到达),还存在另一个极大的不连续问题,我将它称之

Git Gui 查看分支历史的时候中文显示乱码

如图所示 在Git Gui工具栏上选择-编辑-选项: 选择:Default File Contents Encoding, change为UTF-8 成功:

微积分直觉:隐含微分

目录 一、介绍 二、梯子问题 三、结论 四、一个额外的例子 一、介绍         让我们想象一个半径为 5 的圆,以 xy 平面为中心。现在假设我们想在点 (3,4) 处找到一条切线到圆的斜率。         好吧,为了做到这一点,我们必须非常接近圆和切线之间的空间,并沿着该曲线迈出一小步。该步骤的 y 分量为 dy,x 分量为

2024年9月7日历史上的今天大事件早读

251年9月7日 三国时期军事家司马懿逝世 1298年9月7日 马可-波罗与鲁思梯谦合著《马可-波罗行记》 1625年9月7日 魏忠贤下令禁毁东林书院 1689年9月7日 中俄《尼布楚条约》签订 1812年9月7日 俄法博罗季诺决战,标志着拿破仑的军队覆灭开始 1822年9月7日 巴西独立 1853年9月7日 上海小刀会起义 1901年9月7日 《辛丑条约》签订 1904

微分先行PID控制算法

微分先行PID控制算法 微分先行PID控制算法: 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 微分先行PID控制算法: 微分先行PID控制结构,其特点是只对输出量 y ( k ) y(k) y(k)进行微分,而对给定值 y d ( k k ) y_d(kk) yd​(kk)不做微分。这样,在改变给定值时,输出不会改变

不完全微分PID控制算法

不完全微分PID控制算法 注:本文内容摘自《先进PID控制MATLAB仿真(第4版)》刘金琨 编著,研读此书受益匪浅,感谢作者! 在PID控制中,微分信号的引入可改善系统的动态特性,但也容易引起高频干扰,在误差扰动突变时尤其显出微分项的不足。若在控制算法中加入低通滤波器,则可以使系统性能得到改善。 克服上述缺点的方法之一是在PID算法中加入一个一阶惯性环节(低通滤波器) G f

OceanBase 4.x 存储引擎解析:如何让历史库场景成本降低50%+

据国际数据公司(IDC)的报告显示,预计到2025年,全球范围内每天将产生高达180ZB的庞大数据量,这一趋势预示着企业将面临着更加严峻的海量数据处理挑战。随着数据日渐庞大,一些存储系统会出现诸如存储空间扩展难、性能下降甚至卡顿的情况,影响业务系统的正常运转,增加企业的数据处理成本。众多企业已经开始积极寻求如何在保证处理效率的同时,进一步降低数据处理成本。特别是在历史库(冷数据)场景中,这种需求显

REMEMBERING HISTORY WITH CONVOLUTIONAL LSTM FOR ANOMALY DETECTION——利用卷积LSTM记忆历史进行异常检测

上海科技大学的文章,上海科技大学有个组一直在做这方面的工作,好文章挺多的还有数据集。 ABSTRACT 本文解决了视频中的异常检测问题,由于异常是无界的,所以异常检测是一项极具挑战性的任务。我们通过利用卷积神经网络(CNN或ConvNet)对每一帧进行外观编码,并利用卷积长期记忆(ConvLSTM)来记忆与运动信息相对应的所有过去的帧来完成这项任务。然后将ConvNet和ConvLSTM与

在 Git 中 Checkout 历史版本

昨天写代码的时候,误删了一个文件。今天发现的时候,commit 已经 push 到版本库了。本想用 git reset 回退版本,找回文件后重新提交。但是想起 Git 是一个版本控制系统哎,直接从版本库里 checkout 出某个文件的历史版本不就好了? 想法挺好,但是很久没用这个功能,自己已经不记得具体的命令了。于是查了下手册,把和 checkout 历史版本有关的几个命令都记录一下。