vijos 1243 生产产品 单调性优化动态规划

2024-04-03 21:48

本文主要是介绍vijos 1243 生产产品 单调性优化动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

描述 Description

在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器中的任何一台完成,但生产的步骤必须严格按顺序执行。由于这N台机器的性能不同,它们完成每一个步骤的所需时间也不同。机器i完成第j个步骤的时间为T[i,j]。把半成品从一台机器上搬到另一台机器上也需要一定的时间K。同时,为了保证安全和产品的质量,每台机器最多只能连续完成产品的L个步骤。也就是说,如果有一台机器连续完成了产品的L个步骤,下一个步骤就必须换一台机器来完成。现在,dd_engi的OI商店有史以来的第一个产品就要开始生产了,那么最短需要多长时间呢? 
某日Azuki.7对跃动说:这样的题目太简单,我们把题目的范围改一改 
对于菜鸟跃动来说,这是个很困难的问题,他希望你能帮他解决这个问题

 输入格式 Input Format

第一行有四个整数M, N, K, L 
下面的N行,每行有M个整数。第I+1行的第J个整数为T[I,J]。

输出格式 Output Format
输出只有一行,表示需要的最短时间。
样例输入 Sample Input

3 2 0 2
2 2 3
1 3 1


样例输出 Sample Output
4
时间限制 Time Limitation
1s
注释 Hint
对于50%的数据,N<=5,L<=4,M<=10000
对于100%的数据,N<=5, L<=50000,M<=100000

 

这道题是在看论文时看到的,于是到vijos那注册了一个账号来做做,谁知竟然做了一个下午,悲剧……

由于理论性的东西已经学过了,知道这是个dp+单调队列。可第一次编还是编了好久。

首先,很容易写出动态转移方程:f(i,j)=min( min( f(p,i) ) + sum(i,j) - sum(i,k) +val) ,i>k>i-l+1,m>p>0 && p!=i

由于m很小,小于6,所以,这个方程的主要优化在于寻找外层的min

而单调队列的方程为:f(x)= opt( cost[i] ) bound[x] <=i<x;

将动态转移方程化简得:f(i,j)=min( min( f(p,i) ) - sum(i,k) ) + sum(i,j)+val ,i>k>i-l+1,m>p>0 && p!=i

这样就可以用单调队列实现了。

 

View Code
  1 #include<stdio.h>
  2 #include<stdlib.h>
  3 #include<iostream>
  4 #include<string>
  5 #include<queue>
  6 #include<deque>
  7 #include<map>
  8 #include<cmath>
  9 #include<stack>
 10 #include<algorithm>
 11 #include<functional>
 12 using namespace std;
 13 const int N=6;
 14 const int L=50010;
 15 const int M=100010;
 16 typedef __int64 LL;
 17 struct TT{
 18     LL val;
 19     int num;
 20     TT(LL v,int n){val=v,num=n;};
 21 };
 22 deque<TT>que[N];
 23 LL sum[N][M];
 24 LL str[N][M];
 25 int l,n;
 26 LL kk;
 27 void init(){
 28     for(int i=0;i<n;i++){
 29         while(!que[i].empty()){
 30             que[i].pop_back();
 31         }
 32         que[i].push_back(TT(0,-1));
 33         str[i][0]=sum[i][0];
 34     }
 35 }
 36 void update(int k){
 37     int first=0,second=0,now;
 38     LL tmp;
 39     if(str[0][k]>str[1][k])first=1;
 40     else second=1;
 41     
 42     for(int i=2;i<n;i++){
 43         if(str[i][k]<=str[first][k]){
 44             second=first,first=i;
 45         }else{
 46             if(str[i][k]<str[second][k]){
 47                 second=i;
 48             }
 49         }
 50     }
 51 
 52     for(int i=0;i<n;i++){
 53         now=first;
 54         if(i==now){
 55             now=second;
 56         }
 57         tmp=str[now][k]-sum[i][k]+kk;
 58         while(!que[i].empty() &&que[i].front().num+l<=k)que[i].pop_front();
 59         while(!que[i].empty() && que[i].back().val>=tmp)que[i].pop_back();
 60         que[i].push_back(TT(tmp,k));
 61 
 62     }
 63     
 64 }
 65 int main()
 66 {
 67     int m,i,j;
 68     LL ans;
 69     while(~scanf("%d%d%d%d",&m,&n,&kk,&l)){
 70         for(i=0;i<n;i++){
 71             scanf("%I64d",&sum[i][0]);
 72             for(j=1;j<m;j++){
 73                 scanf("%I64d",&sum[i][j]);
 74                 sum[i][j]+=sum[i][j-1];
 75             }
 76         }
 77 
 78         
 79         if(n==1){
 80             printf("%I64d\n",sum[0][m-1]);
 81         }else{
 82             init();
 83     
 84             for(i=0;i<m;i++){
 85                 for(j=0;j<n;j++){
 86                     str[j][i]=que[j].front().val+sum[j][i];
 87                 }
 88                 update(i);
 89             }
 90             m--;
 91             ans=str[0][m];
 92             for(int i=1;i<n;i++){
 93                 if(ans>str[i][m])ans=str[i][m];
 94             }
 95             printf("%I64d\n",ans);
 96         }
 97     }
 98 
 99 
100     
101     return 0;
102 }
103 /*
104 3 2 2 1
105 1 2 3
106 1 2 3
107 */

 

 

 



 

这篇关于vijos 1243 生产产品 单调性优化动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874067

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6