vijos 1243 生产产品 单调性优化动态规划

2024-04-03 21:48

本文主要是介绍vijos 1243 生产产品 单调性优化动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

描述 Description

在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器中的任何一台完成,但生产的步骤必须严格按顺序执行。由于这N台机器的性能不同,它们完成每一个步骤的所需时间也不同。机器i完成第j个步骤的时间为T[i,j]。把半成品从一台机器上搬到另一台机器上也需要一定的时间K。同时,为了保证安全和产品的质量,每台机器最多只能连续完成产品的L个步骤。也就是说,如果有一台机器连续完成了产品的L个步骤,下一个步骤就必须换一台机器来完成。现在,dd_engi的OI商店有史以来的第一个产品就要开始生产了,那么最短需要多长时间呢? 
某日Azuki.7对跃动说:这样的题目太简单,我们把题目的范围改一改 
对于菜鸟跃动来说,这是个很困难的问题,他希望你能帮他解决这个问题

 输入格式 Input Format

第一行有四个整数M, N, K, L 
下面的N行,每行有M个整数。第I+1行的第J个整数为T[I,J]。

输出格式 Output Format
输出只有一行,表示需要的最短时间。
样例输入 Sample Input

3 2 0 2
2 2 3
1 3 1


样例输出 Sample Output
4
时间限制 Time Limitation
1s
注释 Hint
对于50%的数据,N<=5,L<=4,M<=10000
对于100%的数据,N<=5, L<=50000,M<=100000

 

这道题是在看论文时看到的,于是到vijos那注册了一个账号来做做,谁知竟然做了一个下午,悲剧……

由于理论性的东西已经学过了,知道这是个dp+单调队列。可第一次编还是编了好久。

首先,很容易写出动态转移方程:f(i,j)=min( min( f(p,i) ) + sum(i,j) - sum(i,k) +val) ,i>k>i-l+1,m>p>0 && p!=i

由于m很小,小于6,所以,这个方程的主要优化在于寻找外层的min

而单调队列的方程为:f(x)= opt( cost[i] ) bound[x] <=i<x;

将动态转移方程化简得:f(i,j)=min( min( f(p,i) ) - sum(i,k) ) + sum(i,j)+val ,i>k>i-l+1,m>p>0 && p!=i

这样就可以用单调队列实现了。

 

View Code
  1 #include<stdio.h>
  2 #include<stdlib.h>
  3 #include<iostream>
  4 #include<string>
  5 #include<queue>
  6 #include<deque>
  7 #include<map>
  8 #include<cmath>
  9 #include<stack>
 10 #include<algorithm>
 11 #include<functional>
 12 using namespace std;
 13 const int N=6;
 14 const int L=50010;
 15 const int M=100010;
 16 typedef __int64 LL;
 17 struct TT{
 18     LL val;
 19     int num;
 20     TT(LL v,int n){val=v,num=n;};
 21 };
 22 deque<TT>que[N];
 23 LL sum[N][M];
 24 LL str[N][M];
 25 int l,n;
 26 LL kk;
 27 void init(){
 28     for(int i=0;i<n;i++){
 29         while(!que[i].empty()){
 30             que[i].pop_back();
 31         }
 32         que[i].push_back(TT(0,-1));
 33         str[i][0]=sum[i][0];
 34     }
 35 }
 36 void update(int k){
 37     int first=0,second=0,now;
 38     LL tmp;
 39     if(str[0][k]>str[1][k])first=1;
 40     else second=1;
 41     
 42     for(int i=2;i<n;i++){
 43         if(str[i][k]<=str[first][k]){
 44             second=first,first=i;
 45         }else{
 46             if(str[i][k]<str[second][k]){
 47                 second=i;
 48             }
 49         }
 50     }
 51 
 52     for(int i=0;i<n;i++){
 53         now=first;
 54         if(i==now){
 55             now=second;
 56         }
 57         tmp=str[now][k]-sum[i][k]+kk;
 58         while(!que[i].empty() &&que[i].front().num+l<=k)que[i].pop_front();
 59         while(!que[i].empty() && que[i].back().val>=tmp)que[i].pop_back();
 60         que[i].push_back(TT(tmp,k));
 61 
 62     }
 63     
 64 }
 65 int main()
 66 {
 67     int m,i,j;
 68     LL ans;
 69     while(~scanf("%d%d%d%d",&m,&n,&kk,&l)){
 70         for(i=0;i<n;i++){
 71             scanf("%I64d",&sum[i][0]);
 72             for(j=1;j<m;j++){
 73                 scanf("%I64d",&sum[i][j]);
 74                 sum[i][j]+=sum[i][j-1];
 75             }
 76         }
 77 
 78         
 79         if(n==1){
 80             printf("%I64d\n",sum[0][m-1]);
 81         }else{
 82             init();
 83     
 84             for(i=0;i<m;i++){
 85                 for(j=0;j<n;j++){
 86                     str[j][i]=que[j].front().val+sum[j][i];
 87                 }
 88                 update(i);
 89             }
 90             m--;
 91             ans=str[0][m];
 92             for(int i=1;i<n;i++){
 93                 if(ans>str[i][m])ans=str[i][m];
 94             }
 95             printf("%I64d\n",ans);
 96         }
 97     }
 98 
 99 
100     
101     return 0;
102 }
103 /*
104 3 2 2 1
105 1 2 3
106 1 2 3
107 */

 

 

 



 

这篇关于vijos 1243 生产产品 单调性优化动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874067

相关文章

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S