深度学习模型--深度置信网络(DBNs)

2024-04-03 18:36

本文主要是介绍深度学习模型--深度置信网络(DBNs),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI大模型学习

方向一:AI大模型学习的理论基础

提示:探讨AI大模型学习的数学基础、算法原理以及模型架构设计等。可以深入分析各种经典的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)以及Transformer等,并讨论它们在大规模数据处理中的优势与挑战。

深度置信网络(Deep Belief Networks,DBNs)是一种复杂的神经网络结构,它由多层隐层构成,旨在捕捉数据中的高层抽象特征。DBNs在2006年被Hinton等人重新引入到深度学习领域,标志着现代深度学习时代的开始。它们在图像识别、语音识别和自然语言处理等领域展示了出色的性能。

DBN的基本构成

DBN由多个受限玻尔兹曼机(Restricted Boltzmann Machines,RBMs)或其他类型的生成模型堆叠而成。每个RBM层都学习输入数据的分布,并尝试捕捉数据中的特征。通过堆叠,每一层都在前一层捕捉到的特征基础上进一步抽象,使得网络能够学习到更加复杂的数据表示。

受限玻尔兹曼机(RBM)

受限玻尔兹曼机(RBMs)是一种特殊类型的神经网络,属于生成式随机网络,用于高效地学习数据的概率分布。RBMs在深度学习、推荐系统、特征学习等领域有着广泛的应用。它们由两层组成:一个可见层用于接收输入数据,和一个隐层用于学习数据特征;层内的神经元不相互连接,层间的神经元全连接。这种结构的关键特性是限制(即“受限”),它减少了模型的复杂性,使得训练变得可行。RBM的目标是学习一个概率分布,以此来生成数据。它通过对比散度(Contrastive Divergence,CD)算法进行训练,这种算法通过不断调整权重来减小网络重构输入数据与原始数据之间的差异。

RBM的基本结构

  • 可见层(Visible Layer):对应于输入数据,可以是任何类型的数据点,如像素值、评分或二进制特征。
  • 隐层(Hidden Layer):旨在捕捉可见层数据的特征或模式。隐层的激活可以理解为对输入数据的一种高层表示。

RBM的工作原理

RBMs通过学习可见层和隐层之间的权重,来建模输入数据的概率分布。它们使用一种称为对比散度(Contrastive Divergence,CD)的训练算法,通过以下步骤进行:

  1. 前向传播:从可见层到隐层的过程,用于计算给定输入时隐层神经元的激活概率。
  2. 重建过程:从隐层到可见层的过程,尝试重建输入数据,从而学习数据分布。
  3. 参数更新:基于输入数据和重建数据之间的差异,通过梯度下降算法更新权重和偏置项,使模型更好地学习数据的概率分布。

RBM的训练

  • 能量函数:RBMs通过能量函数来定义系统的状态,该函数是权重、偏置和节点状态的函数。模型的目标是最小化整个网络的能量。
  • 概率分布:使用能量函数,RBMs可以计算给定可见层状态下隐层状态的概率,反之亦然。这种计算涉及到所有可能配置的求和,实际操作中通过采样方法如吉布斯采样(Gibbs Sampling)来近似。

RBM的应用

  • 特征提取:RBMs能够学习到数据中有意义的特征表示,这对于图像识别、语音识别等任务特别有用。
  • 协同过滤:在推荐系统中,RBMs可以学习用户和物品之间的潜在关系,从而提供个性化推荐。
  • 降维:RBMs能够将数据从高维空间转换到低维的隐层表示,有助于数据压缩和可视化。

受限玻尔兹曼机是深度学习领域的一种基础模型,尽管它们比较古老,但在理解深度神经网络的工作原理和学习数据的概率分布方面仍然非常重要。通过简化的双层结构和有效的训练算法,RBMs为后续更复杂的深度学习模型提供了理论基础和实践经验。

DBN的训练过程

DBN的训练分为两个主要步骤:无监督预训练和有监督微调。

  1. 无监督预训练

    • 从底部开始,逐层训练RBM。
    • 每一层RBM都用其前一层的输出作为输入,学习捕捉特征。
    • 预训练帮助初始化权重,避免了随机权重初始化可能导致的训练困难。
  2. 有监督微调

    • 在堆叠的RBMs上添加一个或多个分类层(如softmax层),然后对整个网络进行有监督的训练,以优化特定的任务性能,如分类或回归。
    • 微调通过标准的反向传播算法完成,调整所有层的权重,以最小化预测和真实标签之间的差异。

DBN的特点和应用

  • 特点:DBN能够自动学习到高层特征,这在传统机器学习方法中往往需要手动设计。此外,DBN的分层预训练策略有效地解决了深层网络训练时的梯度消失问题。
  • 应用:DBNs广泛应用于图像识别、语音识别、推荐系统和自然语言处理等领域,尤其在数据的非监督学习和特征提取方面展现出优异的性能。

尽管深度学习领域的研究迅速发展,引入了更多先进的网络结构,DBN仍然是理解深度学习和生成模型重要的一环,为深度学习的发展奠定了基础。对于初学者来说,理解DBN及其构成的RBM,不仅有助于深入掌握深度学习的基本概念,还能够为学习更复杂的模型如卷积神经网络(CNNs)和循环神经网络(RNNs)等打下坚实的基础。


 

这篇关于深度学习模型--深度置信网络(DBNs)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/873674

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行