多元线性回归模型中的常数项

2024-04-03 11:08

本文主要是介绍多元线性回归模型中的常数项,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:flyerye
链接:https://www.zhihu.com/question/22450977/answer/250476871
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

回答这个问题,我们先从定义出发,然后再结合个实际例子去理解。从定义来看,多元线性回归方程定义如下:

Y=a+b_{1}x_{1}+b_{2}x_{2}+...+b_{n}x_{n}+\varepsilon

这里的 a 为常数项, \varepsilon 为随机误差项,且服从标准正态分布( \sim N(0,1) ),或者我们把它称作白噪声(white noise)。通过图像,我们可以很好理解常数项和随机误差的含义:

<img src="https://pic4.zhimg.com/50/v2-b3543732f4855d372e37c747e332362e_hd.jpg" data-rawwidth="419" data-rawheight="240" class="content_image" width="419"> 图一,一元线性回归示例

上图是多元线性回归回归的一个特例,即一元线性回归。多元就是在一元的基础上,用更多的自变量对因变量进行解释。我们以一元为例,来看常数项和随机误差的含义。从图中可以看出,常数项是拟合的一元回归直线在因变量(Y)轴上的截距;误差是实际的点和回归直线之间的差,而随机则表示的是这个误差不是固定的,有大有小,没有特定的规律,服从标准正态分布。具体来说,常数项表示的是未被自变量解释的且长期存在(非随机)的部分,即信息残留。而随机误差是在自变量解释空间内,预测值和去掉常数项的实际值的误差。下图是从一个多元线性回归模型的视角去看问题:因变量(Y)代表需要解释的全体信息,模型里的Xi构成的空间是自变量解释空间,随机误差存在于自变量解释空间中。在自变量解释空间外,如果还有恒定的信息残留,那么这部分信息构成常数项。

<img src="https://pic1.zhimg.com/50/v2-68beb4a4bd82ac547341ae0d5f123009_hd.jpg" data-rawwidth="283" data-rawheight="285" class="content_image" width="283"> 图二,多元线性回归模型解释因变量示意图

作者:徐惟能
链接:https://www.zhihu.com/question/22450977/answer/21409955
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

一言以蔽之,在计量经济学的线性回归模型中,常数项在很多情况下并无实际的解释意义。

要论含义,常数项的数学含义是,平均来讲,当所有解释变量的值为0的时候,被解释变量的值是几?但是在计量经济学的实证模型中,这通常是无意义的,原因很简单,因为在很多时候,解释变量的定义域并不一定包括0,比如人的身高、体重等等。可是,即便所有的解释变量都可以同时取0,常数项依然是基本无意义的。我们回到线性回归的本质上来讲的话,所有参数的确定都为了一个目的:让残差项的均值为0,而且残差项的平方和最小。所以,想象一下,当其他的参数都确定了以后,常数项的变化在图像上表现出来的就是拟合曲线的上下整体浮动,当曲线浮动到某一位置,使得在该位置上,残差项的均值为0,曲线与y轴所确定的截距即为常数项。因此,可以理解为常数项是对其他各个解释变量所留下的偏误(bias)的线性修正。但是要说常数项具体的值所代表的解释意义,在通常情况下是无意义的。

写到这里,有人可能会问,既然无意义,我们何不去掉常数项?答案是否定的,原因是,如果去除了常数项,就等于强制认定当所有解释变量为0时,被解释变量为0。如果这个断定不符合实际意义,而你执意去除常数项的话,你的线性估计将是有偏的。

随机误差项的理解相对简单,在线性回归模型中,每一个观测值都有一个残差项,也叫随机误差项,它刻画的是模型的估计值和真实观测值之间的偏差。

说实在的,区别不太大,而且有的时候去掉常数项各变量t值会有上升。
平狄克的「econometrics」书中提到过「可以将常数项看作是值恒为1的一个虚拟变量的系数」(上述原话为英文,但是是这个意思)也就是说,它可能包含了一些你忽视掉的虚拟变量。
而且带常数项的模型其实是对随机误差项的优化,我们在做OLS时总是假定随机误差项是标准正态分布的,但这很难满足。假设随机误差项的均值不是0,而是一个常数,那么加入常数项的模型就会使得随机误差项又变成了标准正态分布,它的期望就被含在常数项里了。总而言之,这样的模型更为靠谱。


作者:邹日佳
链接:https://www.zhihu.com/question/19664505/answer/12629408
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

这篇关于多元线性回归模型中的常数项的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872747

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号