HDU 3507 [Print Article]DP斜率优化

2024-04-03 07:38

本文主要是介绍HDU 3507 [Print Article]DP斜率优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目大意

给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小。其中\(C_i\)为序列中的项的值,\(M\)为常数。$ j,k $ 表示在原序列中连续的某一段的起始位置和结束位置。

解题思路

考虑到\(n\)的范围巨大,肯定不能用\(O(n^2)\)的暴力DP,而贪心又显然有问题,所以我们只能尝试对DP优化。

我们设\(f[i]\)为前\(i\)项作为子问题的解,\(sum[i]\)为前\(i\)项的前缀和。那么,若从\(i\)转移到\(k\)优于从\(j\)转移到\(k\)(不妨令\(i > j\))就有:
\[ f[i]+M+(sum[k]-sum[i])^2 < f[j]+M+(sum[k]-sum[j])^2 \]
化简,得
\[ \frac{f[i]-f[j]+sum[i]^2-sum[j]^2}{2sum[i]-2sum[j]}<sum[k] \]
到这里,做法就显然了,就是DP斜率优化。

接下来就在这道题的基础上大致分析一下什么是斜率优化。


我们不妨令\(Y[i]=f[i]-sum[i]^2,X[i]=2sum[i]\)。那么上面不等式的左边就变为了\(\frac{Y[i]-Y[j]}{X[i]-X[j]}\)。这个东西是不是很像斜率呢?\(X,Y\)可以看成点。我们不妨设现在从左至右有\(3\)个点\(i,j,k\)\(i,j\)斜率为\(l_1\)\(j,k\)斜率为\(l_2\)。接下来我们考虑\(l_1,l_2\)

\(l_2 \leqslant l_1\)时,若\(sum[k] \leqslant l_2 \leqslant l_1\),那么最优值不是\(j,k\);若\(l_2 < sum[k] \leqslant l_1\),那么\(k\)\(j\)优;若\(l_2 \leqslant l_1 < sum[k]\),那么\(k\)\(i,j,k\)中最优。所以不论如何,\(j\)都不会成为当前最优方案,我们不妨删掉\(j\)

\(l_1 < l2\)时,若\(sum[k] \leqslant l_1 < l_2\),那么最优值可能是\(i\);若\(l_1 < sum[k] \leqslant l_2\),那么\(j\)\(i,j,k\)中最优;若\(l_1 < l_2 < sum[k]\),那么最优值可能为\(k\)

进过如上分析,我们发现,我们只需要保留在图上逐个连线后样子为下凸的一些点。同时我们又发现,若从点\(i\)转移为当前最优,那么在图上看来这个点应该与斜率为\(sum[k]\)的直线“相切”。所以我们转移的时候只需要找在保留的点中,向前斜率小于\(sum[k]\),向后斜率大于\(sum[k]\)的点就可以了。

最后,这里sum[k]单调不减,所以找当前最优的转移可以优化;若遇到\(sum[k]\)不单调的情况,二分查找即可。

tip:推式子的时候不能忽略取等的情况。我就是因为$Greater$函数中漏了取等的情况,听取WA声一片……
补:后来发现实际上是可能不严格递增,导致判断的时候某个结果为\(0\)

参考程序

#include <bits/stdc++.h>
#define LL long long
using namespace std;LL N, M, a[ 500010 ], Sum[ 500010 ], F[ 500010 ];
LL L, R, Queue[ 500010 ];LL sqr( LL x ) { return x * x; }bool Less( LL j, LL i, LL t ) {return F[ i ] - F[ j ] + sqr( Sum[ i ] ) - sqr( Sum[ j ] ) < 2 * Sum[ t ] * ( Sum[ i ] - Sum[ j ] );
}bool Greater( LL k, LL j, LL i ) {LL X2 = 2 * ( Sum[ i ] - Sum[ j ] );LL Y2 = F[ i ] - F[ j ] + sqr( Sum[ i ] ) - sqr( Sum[ j ] );LL X1 = 2 * ( Sum[ j ] - Sum[ k ] );LL Y1 = F[ j ] - F[ k ] + sqr( Sum[ j ] ) - sqr( Sum[ k ] );return X1 * Y2 <= X2 * Y1;
}int main() {while( scanf( "%lld%lld", &N, &M ) == 2 ) {memset( a, 0, sizeof( a ) );memset( Sum, 0, sizeof( Sum ) );memset( F, 0, sizeof( F ) );memset( Queue, 0, sizeof( Queue ) );L = R = 0;for( LL i = 1; i <= N; ++i ) scanf( "%lld", &a[ i ] );for( LL i = 1; i <= N; ++i ) Sum[ i ] = Sum[ i - 1 ] + a[ i ];R = 1; Queue[ 0 ] = 0;for( LL i = 1; i <= N; ++i ) {while( L + 1 < R && Less( Queue[ L ], Queue[ L + 1 ], i ) )++L;F[ i ] = F[ Queue[ L ] ] + M + sqr( Sum[ i ] - Sum[ Queue[ L ] ] );while( L + 1 < R && Greater( Queue[ R - 2 ], Queue[ R - 1 ], i ) )--R;Queue[ R++ ] = i;}printf( "%lld\n", F[ N ] );}return 0;
}

转载于:https://www.cnblogs.com/chy-2003/p/9749925.html

这篇关于HDU 3507 [Print Article]DP斜率优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872300

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和