HDU 3507 [Print Article]DP斜率优化

2024-04-03 07:38

本文主要是介绍HDU 3507 [Print Article]DP斜率优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目大意

给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小。其中\(C_i\)为序列中的项的值,\(M\)为常数。$ j,k $ 表示在原序列中连续的某一段的起始位置和结束位置。

解题思路

考虑到\(n\)的范围巨大,肯定不能用\(O(n^2)\)的暴力DP,而贪心又显然有问题,所以我们只能尝试对DP优化。

我们设\(f[i]\)为前\(i\)项作为子问题的解,\(sum[i]\)为前\(i\)项的前缀和。那么,若从\(i\)转移到\(k\)优于从\(j\)转移到\(k\)(不妨令\(i > j\))就有:
\[ f[i]+M+(sum[k]-sum[i])^2 < f[j]+M+(sum[k]-sum[j])^2 \]
化简,得
\[ \frac{f[i]-f[j]+sum[i]^2-sum[j]^2}{2sum[i]-2sum[j]}<sum[k] \]
到这里,做法就显然了,就是DP斜率优化。

接下来就在这道题的基础上大致分析一下什么是斜率优化。


我们不妨令\(Y[i]=f[i]-sum[i]^2,X[i]=2sum[i]\)。那么上面不等式的左边就变为了\(\frac{Y[i]-Y[j]}{X[i]-X[j]}\)。这个东西是不是很像斜率呢?\(X,Y\)可以看成点。我们不妨设现在从左至右有\(3\)个点\(i,j,k\)\(i,j\)斜率为\(l_1\)\(j,k\)斜率为\(l_2\)。接下来我们考虑\(l_1,l_2\)

\(l_2 \leqslant l_1\)时,若\(sum[k] \leqslant l_2 \leqslant l_1\),那么最优值不是\(j,k\);若\(l_2 < sum[k] \leqslant l_1\),那么\(k\)\(j\)优;若\(l_2 \leqslant l_1 < sum[k]\),那么\(k\)\(i,j,k\)中最优。所以不论如何,\(j\)都不会成为当前最优方案,我们不妨删掉\(j\)

\(l_1 < l2\)时,若\(sum[k] \leqslant l_1 < l_2\),那么最优值可能是\(i\);若\(l_1 < sum[k] \leqslant l_2\),那么\(j\)\(i,j,k\)中最优;若\(l_1 < l_2 < sum[k]\),那么最优值可能为\(k\)

进过如上分析,我们发现,我们只需要保留在图上逐个连线后样子为下凸的一些点。同时我们又发现,若从点\(i\)转移为当前最优,那么在图上看来这个点应该与斜率为\(sum[k]\)的直线“相切”。所以我们转移的时候只需要找在保留的点中,向前斜率小于\(sum[k]\),向后斜率大于\(sum[k]\)的点就可以了。

最后,这里sum[k]单调不减,所以找当前最优的转移可以优化;若遇到\(sum[k]\)不单调的情况,二分查找即可。

tip:推式子的时候不能忽略取等的情况。我就是因为$Greater$函数中漏了取等的情况,听取WA声一片……
补:后来发现实际上是可能不严格递增,导致判断的时候某个结果为\(0\)

参考程序

#include <bits/stdc++.h>
#define LL long long
using namespace std;LL N, M, a[ 500010 ], Sum[ 500010 ], F[ 500010 ];
LL L, R, Queue[ 500010 ];LL sqr( LL x ) { return x * x; }bool Less( LL j, LL i, LL t ) {return F[ i ] - F[ j ] + sqr( Sum[ i ] ) - sqr( Sum[ j ] ) < 2 * Sum[ t ] * ( Sum[ i ] - Sum[ j ] );
}bool Greater( LL k, LL j, LL i ) {LL X2 = 2 * ( Sum[ i ] - Sum[ j ] );LL Y2 = F[ i ] - F[ j ] + sqr( Sum[ i ] ) - sqr( Sum[ j ] );LL X1 = 2 * ( Sum[ j ] - Sum[ k ] );LL Y1 = F[ j ] - F[ k ] + sqr( Sum[ j ] ) - sqr( Sum[ k ] );return X1 * Y2 <= X2 * Y1;
}int main() {while( scanf( "%lld%lld", &N, &M ) == 2 ) {memset( a, 0, sizeof( a ) );memset( Sum, 0, sizeof( Sum ) );memset( F, 0, sizeof( F ) );memset( Queue, 0, sizeof( Queue ) );L = R = 0;for( LL i = 1; i <= N; ++i ) scanf( "%lld", &a[ i ] );for( LL i = 1; i <= N; ++i ) Sum[ i ] = Sum[ i - 1 ] + a[ i ];R = 1; Queue[ 0 ] = 0;for( LL i = 1; i <= N; ++i ) {while( L + 1 < R && Less( Queue[ L ], Queue[ L + 1 ], i ) )++L;F[ i ] = F[ Queue[ L ] ] + M + sqr( Sum[ i ] - Sum[ Queue[ L ] ] );while( L + 1 < R && Greater( Queue[ R - 2 ], Queue[ R - 1 ], i ) )--R;Queue[ R++ ] = i;}printf( "%lld\n", F[ N ] );}return 0;
}

转载于:https://www.cnblogs.com/chy-2003/p/9749925.html

这篇关于HDU 3507 [Print Article]DP斜率优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872300

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

CSS @media print 使用详解

《CSS@mediaprint使用详解》:本文主要介绍了CSS中的打印媒体查询@mediaprint包括基本语法、常见使用场景和代码示例,如隐藏非必要元素、调整字体和颜色、处理链接的URL显示、分页控制、调整边距和背景等,还提供了测试方法和关键注意事项,并分享了进阶技巧,详细内容请阅读本文,希望能对你有所帮助...

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3