Python可视化概率统计和聚类学习分析生物指纹

2024-04-03 06:52

本文主要是介绍Python可视化概率统计和聚类学习分析生物指纹,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 🎯使用Jupyter Notebook执行Dash 应用,确定Dash输入输出,设计回调函数,Dash应用中包含函数。🎯使用Plotly绘图工具:配置图对象选项,​将图转换为HTML、图像。使用数据集绘图,使用回调函数创建交互式图。🎯 使用Plotly express 图表,创建贫困数据集图表。
  2. 🎯使用条形图和下拉菜单交互式比较值,垂直和水平绘制条形图,链接条形图和下拉列表,显示多个条形图的不同方式(堆叠、分组、重叠和相对),使用构面将图表拆分为多个子图表 - 水平、垂直或环绕,下拉菜单的附加功能(允许多项选择、添加占位符文本等)。🎯使用散点图探索变量并使用滑块过滤子集。🎯使用 Markdown 探索地图并丰富仪表板,等值线地图,利用动画帧向绘图添加新图层,使用地图回调函数,创建 Markdown 组件,地图投影,用散点图绘图,Mapbox 地图,纳入交互式地图。🎯计算数据频率并构建交互式表格,创建直方图,修改直方图的 bin 和使用多个直方图来自定义直方图,向直方图添加交互性,创建 2D 直方图,创建数据表,控制表格的外观(单元格宽度、高度、文本显示等),将直方图和表格添加到应用程序。🎯创建交互式 K均值集群应用程序。🎯创建控制其他组件的组件,添加动态组件。🎯提取和解析URL,创建多页应用。
  3. 🎯创建交互式网络分析,机场交通交互式仪表板,动画散点图,自然语言处理可视化。🎯Python和Julia交互式调用接口。🎯统计可视化、推理和建模。🎯化学指纹相似度评分的概率分布。🎯绘制概率密度并进行分析。🎯时间序列分解绘图。🎯公共安全统计学可视化。🎯死亡率统计分析。🎯量化分子相似度。🎯网络情感仪表板。

🍇Plotly和Dash仪表板

Dash 是由plotly 创建的一个Python 框架,用于创建交互式Web 应用程序。 Dash 是在 Flask、Plotly.js 和 React.js 之上编写的。 使用 Dash,您无需学习 HTML、CSS 和 Javascript 来创建交互式仪表板,您只需要 Python。 Dash 是开源的,使用该框架构建的应用程序可以在 Web 浏览器上查看。

Dash 应用程序由 2 个构建块组成:

  • 布局:布局描述了应用程序的外观和感觉,它定义了图形、下拉列表等元素以及这些元素的位置、大小、颜色等。 Dash 包含 Dash HTML 组件,我们可以使用 Python 创建 HTML 内容并设置其样式,例如标题、段落、图像等。 图形、下拉菜单、滑块等元素是使用 Dash Core 组件创建的。
  • 回调:回调用于为仪表板应用程序带来交互性。例如,我们可以使用这些函数来定义单击按钮或下拉菜单时将发生的活动。

现在,让我们看看如何使用plotly Dash 创建基于Web 的布局。

import dash
import dash_html_components as html
import dash_core_components as dcc
import plotly.graph_objects as go
import plotly.express as px

我们正在使用 dash 包初始化我们的 dash 应用程序。 然后,读取 2018 年至 2019 年不同公司的股价数据,创建 stock_prices 函数,该函数返回股价的折线图。

app = dash.Dash()   
df = px.data.stocks() def stock_prices():fig = go.Figure([go.Scatter(x = df['date'], y = df['GOH'],\line = dict(color = 'firebrick', width = 4), name = 'firm')])fig.update_layout(title = 'Prices over time',xaxis_title = 'Dates',yaxis_title = 'Prices')return fig  app.layout = html.Div(id = 'parent', children = [html.H1(id = 'H1', children = 'Styling using html components', style = {'textAlign':'center',\'marginTop':40,'marginBottom':40}),dcc.Graph(id = 'line_plot', figure = stock_prices())    ])

在第 16 行,我们使用 html Div 组件设置布局,该组件是一种包装器,将在其中创建布局的元素(标题、图形)。 Div 组件包含 id(元素的唯一标识符)、style(用于设置宽度、高度、颜色等)和子元素(等于初始化布局元素的方括号)等参数。

在(html.Div 的)子组件内,我们使用 H1 函数在第 17 行创建 html H1 标题。 在函数内部,我们设置函数的唯一 id (id = ‘H1’)、children 属性,使用它设置标题的文本,将 style 属性设置为字典,在其中设置样式,例如居中对齐文本 ,将顶部和底部边距设置为 40 像素。 在第 21 行,我们使用 dash 核心组件 (dcc) 创建 graph ,在其中设置图形的 id 和figure 参数,该参数等于返回绘图图形对象的函数调用 (stock_pricest())。

为了查看我们的应用程序,我们需要像在 Flask 中一样运行我们的 Web 服务器。请记住,Dash 是构建在 Flask 之上的。

if __name__ == '__main__': app.run_server()

运行应用程序时,您将看到该应用程序正在 http://127.0.0.1:8050/ 上运行,这是您的本地服务器。复制此网址并将其粘贴到您的浏览器中,您将看到以下可视化内容。

现在,让我们看看如何创建连接下拉列表和股价折线图的回调。

使用 @app.callback() 初始化回调,后面跟着函数定义。在此函数中,我们定义更改下拉列表的值时会发生什么。

from dash.dependencies import Input, Output  @app.callback(Output(component_id='line_plot', component_property= 'figure'),[Input(component_id='dropdown', component_property= 'value')])
def graph_update(dropdown_value):print(dropdown_value)fig = go.Figure([go.Scatter(x = df['date'], y = df['{}'.format(dropdown_value)],\line = dict(color = 'firebrick', width = 4))])fig.update_layout(title = 'Stock prices over time',xaxis_title = 'Dates',yaxis_title = 'Prices')return fig  

输入函数的组件属性,即下拉列表的“值”,作为函数 graph_update 中的参数。 在函数内部,我们创建散点图并返回图形对象Fig,该对象使用回调的Output函数传递给dcc.Graph的figure属性。

我们在下面的代码中组合布局、下拉菜单和回调:

import dash
import dash_html_components as html
import plotly.graph_objects as go
import dash_core_components as dcc
import plotly.express as px
from dash.dependencies import Input, Outputapp = dash.Dash()df = px.data.stocks()app.layout = html.Div(id = 'parent', children = [html.H1(id = 'H1', children = 'Styling using html components', style = {'textAlign':'center',\'marginTop':40,'marginBottom':40}),dcc.Dropdown( id = 'dropdown',options = [{'label':'Google', 'value':'GOOG' },{'label': 'Apple', 'value':'AAPL'},{'label': 'Amazon', 'value':'AMZN'},],value = 'GOOG'),dcc.Graph(id = 'bar_plot')])@app.callback(Output(component_id='bar_plot', component_property= 'figure'),[Input(component_id='dropdown', component_property= 'value')])
def graph_update(dropdown_value):print(dropdown_value)fig = go.Figure([go.Scatter(x = df['date'], y = df['{}'.format(dropdown_value)],\line = dict(color = 'firebrick', width = 4))])fig.update_layout(title = 'Stock prices over time',xaxis_title = 'Dates',yaxis_title = 'Prices')return fig  if __name__ == '__main__': app.run_server()

下图显示了下拉列表值的变化如何更新我们的股价折线图。

参阅一:计算思维
参阅二:亚图跨际

这篇关于Python可视化概率统计和聚类学习分析生物指纹的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872203

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实