Python可视化概率统计和聚类学习分析生物指纹

2024-04-03 06:52

本文主要是介绍Python可视化概率统计和聚类学习分析生物指纹,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 🎯使用Jupyter Notebook执行Dash 应用,确定Dash输入输出,设计回调函数,Dash应用中包含函数。🎯使用Plotly绘图工具:配置图对象选项,​将图转换为HTML、图像。使用数据集绘图,使用回调函数创建交互式图。🎯 使用Plotly express 图表,创建贫困数据集图表。
  2. 🎯使用条形图和下拉菜单交互式比较值,垂直和水平绘制条形图,链接条形图和下拉列表,显示多个条形图的不同方式(堆叠、分组、重叠和相对),使用构面将图表拆分为多个子图表 - 水平、垂直或环绕,下拉菜单的附加功能(允许多项选择、添加占位符文本等)。🎯使用散点图探索变量并使用滑块过滤子集。🎯使用 Markdown 探索地图并丰富仪表板,等值线地图,利用动画帧向绘图添加新图层,使用地图回调函数,创建 Markdown 组件,地图投影,用散点图绘图,Mapbox 地图,纳入交互式地图。🎯计算数据频率并构建交互式表格,创建直方图,修改直方图的 bin 和使用多个直方图来自定义直方图,向直方图添加交互性,创建 2D 直方图,创建数据表,控制表格的外观(单元格宽度、高度、文本显示等),将直方图和表格添加到应用程序。🎯创建交互式 K均值集群应用程序。🎯创建控制其他组件的组件,添加动态组件。🎯提取和解析URL,创建多页应用。
  3. 🎯创建交互式网络分析,机场交通交互式仪表板,动画散点图,自然语言处理可视化。🎯Python和Julia交互式调用接口。🎯统计可视化、推理和建模。🎯化学指纹相似度评分的概率分布。🎯绘制概率密度并进行分析。🎯时间序列分解绘图。🎯公共安全统计学可视化。🎯死亡率统计分析。🎯量化分子相似度。🎯网络情感仪表板。

🍇Plotly和Dash仪表板

Dash 是由plotly 创建的一个Python 框架,用于创建交互式Web 应用程序。 Dash 是在 Flask、Plotly.js 和 React.js 之上编写的。 使用 Dash,您无需学习 HTML、CSS 和 Javascript 来创建交互式仪表板,您只需要 Python。 Dash 是开源的,使用该框架构建的应用程序可以在 Web 浏览器上查看。

Dash 应用程序由 2 个构建块组成:

  • 布局:布局描述了应用程序的外观和感觉,它定义了图形、下拉列表等元素以及这些元素的位置、大小、颜色等。 Dash 包含 Dash HTML 组件,我们可以使用 Python 创建 HTML 内容并设置其样式,例如标题、段落、图像等。 图形、下拉菜单、滑块等元素是使用 Dash Core 组件创建的。
  • 回调:回调用于为仪表板应用程序带来交互性。例如,我们可以使用这些函数来定义单击按钮或下拉菜单时将发生的活动。

现在,让我们看看如何使用plotly Dash 创建基于Web 的布局。

import dash
import dash_html_components as html
import dash_core_components as dcc
import plotly.graph_objects as go
import plotly.express as px

我们正在使用 dash 包初始化我们的 dash 应用程序。 然后,读取 2018 年至 2019 年不同公司的股价数据,创建 stock_prices 函数,该函数返回股价的折线图。

app = dash.Dash()   
df = px.data.stocks() def stock_prices():fig = go.Figure([go.Scatter(x = df['date'], y = df['GOH'],\line = dict(color = 'firebrick', width = 4), name = 'firm')])fig.update_layout(title = 'Prices over time',xaxis_title = 'Dates',yaxis_title = 'Prices')return fig  app.layout = html.Div(id = 'parent', children = [html.H1(id = 'H1', children = 'Styling using html components', style = {'textAlign':'center',\'marginTop':40,'marginBottom':40}),dcc.Graph(id = 'line_plot', figure = stock_prices())    ])

在第 16 行,我们使用 html Div 组件设置布局,该组件是一种包装器,将在其中创建布局的元素(标题、图形)。 Div 组件包含 id(元素的唯一标识符)、style(用于设置宽度、高度、颜色等)和子元素(等于初始化布局元素的方括号)等参数。

在(html.Div 的)子组件内,我们使用 H1 函数在第 17 行创建 html H1 标题。 在函数内部,我们设置函数的唯一 id (id = ‘H1’)、children 属性,使用它设置标题的文本,将 style 属性设置为字典,在其中设置样式,例如居中对齐文本 ,将顶部和底部边距设置为 40 像素。 在第 21 行,我们使用 dash 核心组件 (dcc) 创建 graph ,在其中设置图形的 id 和figure 参数,该参数等于返回绘图图形对象的函数调用 (stock_pricest())。

为了查看我们的应用程序,我们需要像在 Flask 中一样运行我们的 Web 服务器。请记住,Dash 是构建在 Flask 之上的。

if __name__ == '__main__': app.run_server()

运行应用程序时,您将看到该应用程序正在 http://127.0.0.1:8050/ 上运行,这是您的本地服务器。复制此网址并将其粘贴到您的浏览器中,您将看到以下可视化内容。

现在,让我们看看如何创建连接下拉列表和股价折线图的回调。

使用 @app.callback() 初始化回调,后面跟着函数定义。在此函数中,我们定义更改下拉列表的值时会发生什么。

from dash.dependencies import Input, Output  @app.callback(Output(component_id='line_plot', component_property= 'figure'),[Input(component_id='dropdown', component_property= 'value')])
def graph_update(dropdown_value):print(dropdown_value)fig = go.Figure([go.Scatter(x = df['date'], y = df['{}'.format(dropdown_value)],\line = dict(color = 'firebrick', width = 4))])fig.update_layout(title = 'Stock prices over time',xaxis_title = 'Dates',yaxis_title = 'Prices')return fig  

输入函数的组件属性,即下拉列表的“值”,作为函数 graph_update 中的参数。 在函数内部,我们创建散点图并返回图形对象Fig,该对象使用回调的Output函数传递给dcc.Graph的figure属性。

我们在下面的代码中组合布局、下拉菜单和回调:

import dash
import dash_html_components as html
import plotly.graph_objects as go
import dash_core_components as dcc
import plotly.express as px
from dash.dependencies import Input, Outputapp = dash.Dash()df = px.data.stocks()app.layout = html.Div(id = 'parent', children = [html.H1(id = 'H1', children = 'Styling using html components', style = {'textAlign':'center',\'marginTop':40,'marginBottom':40}),dcc.Dropdown( id = 'dropdown',options = [{'label':'Google', 'value':'GOOG' },{'label': 'Apple', 'value':'AAPL'},{'label': 'Amazon', 'value':'AMZN'},],value = 'GOOG'),dcc.Graph(id = 'bar_plot')])@app.callback(Output(component_id='bar_plot', component_property= 'figure'),[Input(component_id='dropdown', component_property= 'value')])
def graph_update(dropdown_value):print(dropdown_value)fig = go.Figure([go.Scatter(x = df['date'], y = df['{}'.format(dropdown_value)],\line = dict(color = 'firebrick', width = 4))])fig.update_layout(title = 'Stock prices over time',xaxis_title = 'Dates',yaxis_title = 'Prices')return fig  if __name__ == '__main__': app.run_server()

下图显示了下拉列表值的变化如何更新我们的股价折线图。

参阅一:计算思维
参阅二:亚图跨际

这篇关于Python可视化概率统计和聚类学习分析生物指纹的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872203

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB