本文主要是介绍TEB teb_local_planner 构建超图过程error cost分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
G2O 背景
G20 边和顶点的定义
https://blog.csdn.net/weixin_43013761/category_11647404.html
使用G20优化器 优化 路径
https://blog.csdn.net/qq_29598161/article/details/115414732
https://zhuanlan.zhihu.com/p/121628349
buildGraph
TebOptimalPlanner::buildGraph 位于 optimal_planner.cpp 文件内,是整个teb planner 的核心
1. 添加顶点 AddTEBVertices
主要是添加位姿顶点和时间间隔顶点
顶点分姿态顶点和时间顶点
1.1.
姿态顶点 VertexPose 内部需要优化的变量主要有三个 x,y,theta
1.2
时间顶点 TimeDiffVertex 内部需要优化的变量主要有1个 dt
void TebOptimalPlanner::AddTEBVertices()
{// add vertices to graphROS_DEBUG_COND(cfg_->optim.optimization_verbose, "Adding TEB vertices ...");unsigned int id_counter = 0; // used for vertices idsfor (int i=0; i<teb_.sizePoses(); ++i){//基本状态 x,y,thetateb_.PoseVertex(i)->setId(id_counter++);//先赋值 再自行+1optimizer_->addVertex(teb_.PoseVertex(i));if (teb_.sizeTimeDiffs()!=0 && i<teb_.sizeTimeDiffs()){//基本状态 dtteb_.TimeDiffVertex(i)->setId(id_counter++);//先赋值 再自行+1 id 累积增加optimizer_->addVertex(teb_.TimeDiffVertex(i));}}
}
2 Edge 的边的定义与Cost误差函数定义
使用到的惩罚函数
double penaltyBoundFromBelow(const double& var, const double& a,const double& epsilon)
函数定义如下
f ( x ) = { 0.0 , if v a r > = a + e p s i l o n − v a r + ( a + e p s i l o n ) , if v a r < ( a + e p s i l o n ) f(x) = \begin{cases} 0.0, & \text{if } var >= a+epsilon \\ -var + (a + epsilon), & \text{if } var < (a+epsilon) \\ \end{cases} f(x)={0.0,−var+(a+epsilon),if var>=a+epsilonif var<(a+epsilon)
2.1 EdgeObstacle
误差函数计算代码
void computeError(){获取顶点姿态const VertexPose* bandpt = static_cast<const VertexPose*>(_vertices[0]);double dist = robot_model_->calculateDistance(bandpt->pose(), _measurement);// Original obstacle cost._error[0] = penaltyBoundFromBelow(dist, cfg_->obstacles.min_obstacle_dist, cfg_->optim.penalty_epsilon);if (cfg_->optim.obstacle_cost_exponent != 1.0 && cfg_->obstacles.min_obstacle_dist > 0.0){// Optional non-linear cost. _error[0] = cfg_->obstacles.min_obstacle_dist * std::pow(_error[0] / cfg_->obstacles.min_obstacle_dist, cfg_->optim.obstacle_cost_exponent);}ROS_ASSERT_MSG(std::isfinite(_error[0]), "EdgeObstacle::computeError() _error[0]=%f\n",_error[0]);}
如果配置文件 obstacle_cost_exponent == 1.0 那么error为线性函数公式整理如下
e r r o r [ 0 ] = { 0.0 , if d i s t > = o b s . m i n _ d i s t + o p t i m . p e n a l t y _ e p s i l o n − d i s t + ( o b s . m i n _ d i s t + o p t i m . p e n a l t y _ e p s i l o n ) , else error[0] = \begin{cases} 0.0, & \text{if } dist >= obs.min\_dist+optim.penalty\_epsilon \\ -dist + (obs.min\_dist+optim.penalty\_epsilon), & \text{else }\\ \end{cases} error[0]={0.0,−dist+(obs.min_dist+optim.penalty_epsilon),if dist>=obs.min_dist+optim.penalty_epsilonelse
如果配置文件 obstacle_cost_exponent != 1.0 那么error[0]继续更新为非线性函数公式整理如下
e r r o r [ 0 ] = o b s . m i n _ d i s t ∗ e r r o r [ 0 ] o b s . m i n _ d i s t c o s t _ e x p o e n t error[0] = obs.min\_dist * \frac{error[0] }{obs.min\_dist}^{cost\_expoent} error[0]=obs.min_dist∗obs.min_disterror[0]cost_expoent
2.2 EdgeInflatedObstacle
- EdgeInflatedObstacle 是一个一元边 继承于 public BaseTebUnaryEdge<2, const Obstacle*, VertexPose>
- 观测类型是const Obstacle*
- 连接的顶点是VertexPose
void computeError(){const VertexPose* bandpt = static_cast<const VertexPose*>(_vertices[0]);double dist = robot_model_->calculateDistance(bandpt->pose(), _measurement);_error[0] = penaltyBoundFromBelow(dist, cfg_->obstacles.min_obstacle_dist, cfg_->optim.penalty_epsilon);if (cfg_->optim.obstacle_cost_exponent != 1.0 && cfg_->obstacles.min_obstacle_dist > 0.0){// Optional non-linear cost. _error[0] = cfg_->obstacles.min_obstacle_dist * std::pow(_error[0] / cfg_->obstacles.min_obstacle_dist, cfg_->optim.obstacle_cost_exponent);}// Additional linear inflation cost_error[1] = penaltyBoundFromBelow(dist, cfg_->obstacles.inflation_dist, 0.0);}
error[0]的计算和EdgeObstacle 类型一样,额外增加一个error[1]
e r r o r [ 1 ] = { 0.0 , if d i s t > = o b s . i n f l a t i o n _ d i s t − d i s t + ( o b s . i n f l a t i o n _ d i s t ) , else error[1] = \begin{cases} 0.0, & \text{if } dist >= obs.inflation\_dist \\ -dist + (obs.inflation\_dist), & \text{else }\\ \end{cases} error[1]={0.0,−dist+(obs.inflation_dist),if dist>=obs.inflation_distelse
2.3 EdgeDynamicObstacle
- EdgeDynamicObstacle 继承于 BaseTebUnaryEdge<2, const Obstacle*, VertexPose> 是一个一元边
void computeError(){const VertexPose* bandpt = static_cast<const VertexPose*>(_vertices[0]);double dist = robot_model_->estimateSpatioTemporalDistance(bandpt->pose(), _measurement, t_);_error[0] = penaltyBoundFromBelow(dist, cfg_->obstacles.min_obstacle_dist, cfg_->optim.penalty_epsilon);_error[1] = penaltyBoundFromBelow(dist, cfg_->obstacles.dynamic_obstacle_inflation_dist, 0.0);}
- 该函数dist主要是预测障碍物在t秒后的位置和姿态顶点的距离
robot_model_->estimateSpatioTemporalDistance - error[0] 计算和EdgeInflatedObstacle EdgeObstacle相同
- error[1] 主要使用dynamic_obstacle_inflation_dist来判断
2.4 EdgeViaPoint
- class EdgeViaPoint 继承 BaseTebUnaryEdge<1, const Eigen::Vector2d*, VertexPose> 一元边
- 误差向量维度1
- 观测为Eigen::Vector2d*
void computeError(){const VertexPose* bandpt = static_cast<const VertexPose*>(_vertices[0]);_error[0] = (bandpt->position() - *_measurement).norm();}
总结
- EdgeViaPoint 主要是评判机器人贴合原始路径的error cost 离原始点位越远 则 error cost 越大
2.5 EdgeVelocity
- EdgeVelocity 继承 public BaseTebMultiEdge<2, double> 三元边
- 连接了3个顶点 2个姿态顶点 1个时间顶点
void computeError(){const VertexPose* conf1 = static_cast<const VertexPose*>(_vertices[0]);const VertexPose* conf2 = static_cast<const VertexPose*>(_vertices[1]);const VertexTimeDiff* deltaT = static_cast<const VertexTimeDiff*>(_vertices[2]);const Eigen::Vector2d deltaS = conf2->estimate().position() - conf1->estimate().position();double dist = deltaS.norm();const double angle_diff = g2o::normalize_theta(conf2->theta() - conf1->theta());if (cfg_->trajectory.exact_arc_length && angle_diff != 0){double radius = dist/(2*sin(angle_diff/2));dist = fabs( angle_diff * radius ); // actual arg length!}double vel = dist / deltaT->estimate();// vel *= g2o::sign(deltaS[0]*cos(conf1->theta()) + deltaS[1]*sin(conf1->theta())); // consider directionvel *= fast_sigmoid( 100 * (deltaS.x()*cos(conf1->theta()) + deltaS.y()*sin(conf1->theta())) ); // consider directionconst double omega = angle_diff / deltaT->estimate();_error[0] = penaltyBoundToInterval(vel, -cfg_->robot.max_vel_x_backwards, cfg_->robot.max_vel_x,cfg_->optim.penalty_epsilon);_error[1] = penaltyBoundToInterval(omega, cfg_->robot.max_vel_theta,cfg_->optim.penalty_epsilon);}
penaltyBoundToInterval 函数如下
inline double penaltyBoundToInterval(const double& var,const double& a, const double& b, const double& epsilon)
{if (var < a+epsilon){return (-var + (a + epsilon));}if (var <= b-epsilon){return 0.;}else{return (var - (b - epsilon));}
}
总结
- EdgeVelocity 主要是控制了路径的最大最小速度进行的error cost评判 使得机器人速度 以及角速度在合理的范围之内
2.6 EdgeAcceleration
- class EdgeAcceleration 继承 public BaseTebMultiEdge<2, double> 多元边
void computeError(){ROS_ASSERT_MSG(cfg_, "You must call setTebConfig on EdgeAcceleration()");const VertexPose* pose1 = static_cast<const VertexPose*>(_vertices[0]);const VertexPose* pose2 = static_cast<const VertexPose*>(_vertices[1]);const VertexPose* pose3 = static_cast<const VertexPose*>(_vertices[2]);const VertexTimeDiff* dt1 = static_cast<const VertexTimeDiff*>(_vertices[3]);const VertexTimeDiff* dt2 = static_cast<const VertexTimeDiff*>(_vertices[4]);// VELOCITY & ACCELERATIONconst Eigen::Vector2d diff1 = pose2->position() - pose1->position();const Eigen::Vector2d diff2 = pose3->position() - pose2->position();double dist1 = diff1.norm();double dist2 = diff2.norm();const double angle_diff1 = g2o::normalize_theta(pose2->theta() - pose1->theta());const double angle_diff2 = g2o::normalize_theta(pose3->theta() - pose2->theta());if (cfg_->trajectory.exact_arc_length) // use exact arc length instead of Euclidean approximation{if (angle_diff1 != 0){const double radius = dist1/(2*sin(angle_diff1/2));dist1 = fabs( angle_diff1 * radius ); // actual arg length!}if (angle_diff2 != 0){const double radius = dist2/(2*sin(angle_diff2/2));dist2 = fabs( angle_diff2 * radius ); // actual arg length!}}double vel1 = dist1 / dt1->dt();double vel2 = dist2 / dt2->dt();// consider directions
// vel1 *= g2o::sign(diff1[0]*cos(pose1->theta()) + diff1[1]*sin(pose1->theta()));
// vel2 *= g2o::sign(diff2[0]*cos(pose2->theta()) + diff2[1]*sin(pose2->theta())); vel1 *= fast_sigmoid( 100*(diff1.x()*cos(pose1->theta()) + diff1.y()*sin(pose1->theta())) ); vel2 *= fast_sigmoid( 100*(diff2.x()*cos(pose2->theta()) + diff2.y()*sin(pose2->theta())) ); const double acc_lin = (vel2 - vel1)*2 / ( dt1->dt() + dt2->dt() );_error[0] = penaltyBoundToInterval(acc_lin,cfg_->robot.acc_lim_x,cfg_->optim.penalty_epsilon);// ANGULAR ACCELERATIONconst double omega1 = angle_diff1 / dt1->dt();const double omega2 = angle_diff2 / dt2->dt();const double acc_rot = (omega2 - omega1)*2 / ( dt1->dt() + dt2->dt() );_error[1] = penaltyBoundToInterval(acc_rot,cfg_->robot.acc_lim_theta,cfg_->optim.penalty_epsilon);ROS_ASSERT_MSG(std::isfinite(_error[0]), "EdgeAcceleration::computeError() translational: _error[0]=%f\n",_error[0]);ROS_ASSERT_MSG(std::isfinite(_error[1]), "EdgeAcceleration::computeError() rotational: _error[1]=%f\n",_error[1]);}
总结
- 主要限制了最大角速度和角加速度
2.7 EdgeTimeOptimal
- EdgeTimeOptimal 继承 public BaseTebUnaryEdge<1, double, VertexTimeDiff> 一元边
- 误差向量维度为1
void computeError(){const VertexTimeDiff* timediff = static_cast<const VertexTimeDiff*>(_vertices[0]);_error[0] = timediff->dt();}
总结
- 时间越小越好, 这样子机器人会向最大速度去调整
2.8 EdgeShortestPath
- EdgeShortestPath : public BaseTebBinaryEdge<1, double, VertexPose, VertexPose> 二元边
- 误差向量维度为1
void computeError() {const VertexPose *pose1 = static_cast<const VertexPose*>(_vertices[0]);const VertexPose *pose2 = static_cast<const VertexPose*>(_vertices[1]);_error[0] = (pose2->position() - pose1->position()).norm();}
总结
- 两个姿态顶点之间的距离越小cost 越低
2.9 EdgeKinematicsDiffDrive
- EdgeKinematicsDiffDrive : public BaseTebBinaryEdge<2, double, VertexPose, VertexPose> 二元边
- 误差维度为2
nage
void computeError(){const VertexPose* conf1 = static_cast<const VertexPose*>(_vertices[0]);const VertexPose* conf2 = static_cast<const VertexPose*>(_vertices[1]);Eigen::Vector2d deltaS = conf2->position() - conf1->position();// non holonomic constraint_error[0] = fabs( ( cos(conf1->theta())+cos(conf2->theta()) ) * deltaS[1] - ( sin(conf1->theta())+sin(conf2->theta()) ) * deltaS[0] );// positive-drive-direction constraintEigen::Vector2d angle_vec ( cos(conf1->theta()), sin(conf1->theta()) ); _error[1] = penaltyBoundFromBelow(deltaS.dot(angle_vec), 0,0);// epsilon=0, otherwise it pushes the first bandpoints away from start}
总结
- 不允许反方向
- 不允许 超越动力学范围
2.10 EdgePreferRotDir
- EdgePreferRotDir : public BaseTebBinaryEdge<1, double, VertexPose, VertexPose> 二元边
- 误差维度为1
void computeError(){const VertexPose* conf1 = static_cast<const VertexPose*>(_vertices[0]);const VertexPose* conf2 = static_cast<const VertexPose*>(_vertices[1]); _error[0] = penaltyBoundFromBelow( _measurement*g2o::normalize_theta(conf2->theta()-conf1->theta()) , 0, 0);}
总结
- 主要是前3个姿态点 更偏向偏向朝哪个个方向旋转
这篇关于TEB teb_local_planner 构建超图过程error cost分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!