x264 arm64汇编分析 quant8x8_neon分析

2024-04-02 16:04

本文主要是介绍x264 arm64汇编分析 quant8x8_neon分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 C语言实现

#define QUANT_ONE( coef, mf, f ) \

{ \

    if( (coef) > 0 ) \

        (coef) = (f + (coef)) * (mf) >> 16; \

    else \

        (coef) = - ((f - (coef)) * (mf) >> 16); \

    nz |= (coef); \

}

static int quant_8x8( dctcoef dct[64], udctcoef mf[64], udctcoef bias[64] )

{

    int nz = 0;

    for( int i = 0; i < 64; i++ )

        QUANT_ONE( dct[i], mf[i], bias[i] );

    return !!nz;

}

二 汇编实现

//quant_8x8(int16_t dct[64], uint16_t mf[64], uint16_t bias[64])

function quant_8x8_neon, export=1

     ld1 {v16.8h, v17.8h}, [x0] //从地址x0加载数据到neon寄存器v16和v17

     abs v18.8h, v16.8h //对v16中的数据进行绝对值操作,并将结果存储在v18中

     abs v19.8h, v17.8h //对v17中的数据进行绝对值操作,并将结果存储在v19中

     ld1 {v0.8h, v1.8h}, [x2], #32 //从地址x2加载数据到neon寄存v0和v1,并跳过

     ld1 {v2.8h, v3.8h}, [x1], #32 //从地址x1加载数据到neon寄存器v2和v3,并跳过

     QUANT_TWO v0.8h, v1.8h, v2, v3, v4.16b//调用自定义的QUANT_TWO函数进行量化处理

.rept 3

//重复以下操作3次

    ld1 {v16.8h, v17.8h}, [x0] //v16, v17 dct系数

    abs v18.8h, v16.8h //求绝对值

    abs v19.8h, v17.8h //求绝对值

    ld1 {v0.8h, v1.8h}, [x2], #32

    ld1 {v2.8h, v3.8h}, [x1], #32

    QUANT_TWO v0.8h, v1.8h, v2, v3, v5.16b//再次强调QUANT_TWO函数进行量化处理

//v0.8h, v1.8h 存储偏移 数据64bits

//v2.8h,v3.8h 存储mf 量化因子64bits

    orr v4.16b, v4.16b, v5.16b //将每次量化处理的结果进行或操作,并存储在x4中

.endr

    uqxtn  v0.8b, v4.8h //对v4进行位转换操作

    QUANT_END d0 //量化处理结束

endfunc

// QUANT_TWO   v0.8h,  v1.8h,  v2,  v3,  v4.16b

//QUANT_TWO   v0.8h,  v1.8h,  v2,  v3,  v5.16b

// v0 v1存储偏移数组, v2,v3 量化因子mask用来输出结果

.macro QUANT_TWO bias0 bias1 mf0_1 mf2_3 mask

   add v18.8h, v18.8h, bias0 //绝对值v18.8h 相加bias0

   add v19.8h, v19.8h, bias1 //绝对值v19.8h 相加bias1

   umull v20.4s, v18.4h, mf0_1().4h //这里的h表示 harfword, 4half word量化因子4存入 v20.4s s表示s word, 32bits ,这个也是一致

   umull2 v21.4s, v18.8h, mf0_1().8h //这里h表示harfword, 4half word, 量化因子4存入v21.4s ,v18.8h 64位4个系数 和这个乘以mf量化因子4halfword

//意思乘以之后存入v21.4s

   umull v22.4s, v19.4h, mf2_3().4h

/*mf2_3().4h 的含义是4个half word,  乘以 v19.4h 存入 v22.4s */

   umull2 v23.4s, v19.8h, mf2_3().8h

/*高4个halfword 和 系数相乘 存入 v23.4s 4个sword 32bits的数据中*/

   sshr v16.8h, v16.8h, #15

/*v16以8个16bits 为单位,向右移位15位*/

   sshr v17.8h, v17.8h, #15

/*v17也是这样操作,看起来是取符号位, 取的低64bits*/

   shrn v18.4h, v20.4s, #16

/*对寄存器 v20 进行右移操作,移动 16 位,结果的低 16 位存储在寄存器 v18 中。*/

   shrn2 v18.8h, v21.4s, #16

//上面两句话,一句话写了v18的低64bits,一句话写了高64bits,组合成一个完整的v18寄存器的值

/*对寄存器 v21 进行右移操作,移动 16 位,结果的低 16 位存储在寄存器 v18 中。*/

   shrn v19.4h, v22.4s, #16

/*对寄存器 v22 进行右移操作,移动 16 位,结果的低 16 位存储在寄存器 v19 中。*/

   shrn2 v19.8h, v23.4s, #16

/*对寄存器 v23 进行右移操作,移动 16 位,结果的低 16 位存储在寄存器 v19 中。*/

   eor v18.16b, v18.16b, v16.16b

/*对寄存器 v18 v16 进行异或操作,结果存储在寄存器 v18字节 */

   eor v19.16b, v19.16b, v17.16b

/*对寄存器 v19 v17 进行异或操作,结果存储在寄存器 v19 字节中*/

   sub v18.8h, v19.8h, v16.8h

/*v16.8h 和 v19.8h 寄存器,相减 存入 18.8h */

   sub 19.8h, v19.8h, v17.8h

/*v7.8h 和 v19.8h 寄存器,相减 存入 19.8h*/

   orr mask, v18.16b, v19.16b

/*对寄存器 v18 v19 进行或操作,结果存储在寄存器 mask */

   st1 {v18.8h, v19.8h}, [x0], #32

/*把最终的结果存入,x0的内存位置,dct 数组*/

.endm

这篇关于x264 arm64汇编分析 quant8x8_neon分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870425

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S