【自学记录】【Pytorch2.0深度学习从零开始学 王晓华】第四章 深度学习的理论基础

本文主要是介绍【自学记录】【Pytorch2.0深度学习从零开始学 王晓华】第四章 深度学习的理论基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

4.3.5 反馈神经网络原理的Python实现

遇到的疑问:

1、对神经网络前向计算中,关于系数矩阵W的讨论。

上一章讲到了层结构是【out,in】,所以我觉得在计算Y=WX+b的时候,W矩阵也应该是【out,in】的形状。但是该代码(或者正规代码实现流程)不是的,他是一个这样的结构:
请添加图片描述
请添加图片描述
所以,W矩阵还是【in,out】结构,a1=X1W11+X2W12+b1,为了计算a1,会以列优先循环W矩阵:

 for j in range(self.hidden_n):total = 0.0for i in range(self.input_n):total += self.input_cells[i] * self.input_weights[i][j] #列优先循环W矩阵          

以上self.input_weights[i][j]代码:
j=1,依次输出(1,1),(2,1),对应W11,W12
j=2,依次输出(1,2),(2,2),对应W21,W22
j=3,依次输出(1,3),(2,3),对应W31,W32

以下是神经网络前向传播函数:

 def predict(self,inputs):for i in range(self.input_n - 1):self.input_cells[i] = inputs[i]for j in range(self.hidden_n):total = 0.0for i in range(self.input_n):total += self.input_cells[i] * self.input_weights[i][j]self.hidden_cells[j] = sigmoid(total)for k in range(self.output_n):total = 0.0for j in range(self.hidden_n):total += self.hidden_cells[j] * self.output_weights[j][k]self.output_cells[k] = sigmoid(total)return self.output_cells[:]#浅拷贝

2、有关self.output_cells[:]浅拷贝

神经网络前向传播函数最后使用 return self.output_cells[:] 而不是 return self.output_cells 的主要目的是返回 self.output_cells 的一个浅拷贝(shallow copy),而不是原始对象的引用。这意味着调用者将获得输出值的一个新列表,而不是对原始列表的引用。这可以确保原始 self.output_cells 列表的内部状态在函数返回后不会被意外修改,从而保持对象的封装性和数据的安全性。

源码\第四章\4_3.py

import numpy as np
import math
import random
def rand(a, b):return (b - a) * random.random() + a
def make_matrix(m,n,fill=0.0):mat = []for i in range(m):mat.append([fill] * n)return mat
def sigmoid(x):return 1.0 / (1.0 + math.exp(-x))
def sigmod_derivate(x):return x * (1 - x)
class BPNeuralNetwork:def __init__(self):self.input_n = 0self.hidden_n = 0self.output_n = 0self.input_cells = []self.hidden_cells = []self.output_cells = []self.input_weights = []self.output_weights = []def setup(self,ni,nh,no):self.input_n = ni + 1 #+1是加了一个隐藏层self.hidden_n = nhself.output_n = noself.input_cells = [1.0] * self.input_nself.hidden_cells = [1.0] * self.hidden_nself.output_cells = [1.0] * self.output_nself.input_weights = make_matrix(self.input_n,self.hidden_n)####这里,权重矩阵设定的是【in,out】self.output_weights = make_matrix(self.hidden_n,self.output_n)####这里,权重矩阵设定的是【in,out】# random activatefor i in range(self.input_n):for h in range(self.hidden_n):self.input_weights[i][h] = rand(-0.2, 0.2)for h in range(self.hidden_n):for o in range(self.output_n):self.output_weights[h][o] = rand(-2.0, 2.0)def predict(self,inputs):for i in range(self.input_n - 1):self.input_cells[i] = inputs[i]for j in range(self.hidden_n):total = 0.0for i in range(self.input_n):total += self.input_cells[i] * self.input_weights[i][j]self.hidden_cells[j] = sigmoid(total)for k in range(self.output_n):total = 0.0for j in range(self.hidden_n):total += self.hidden_cells[j] * self.output_weights[j][k]self.output_cells[k] = sigmoid(total)return self.output_cells[:]#浅拷贝def back_propagate(self,case,label,learn):self.predict(case)#计算输出层的误差output_deltas = [0.0] * self.output_nfor k in range(self.output_n):error = label[k] - self.output_cells[k]output_deltas[k] = sigmod_derivate(self.output_cells[k]) * error#误差项#计算隐藏层的误差hidden_deltas = [0.0] * self.hidden_nfor j in range(self.hidden_n):error = 0.0for k in range(self.output_n):error += output_deltas[k] * self.output_weights[j][k]hidden_deltas[j] = sigmod_derivate(self.hidden_cells[j]) * error#更新输出层权重for j in range(self.hidden_n):for k in range(self.output_n):self.output_weights[j][k] += learn * output_deltas[k] * self.hidden_cells[j]#更新隐藏层权重for i in range(self.input_n):for j in range(self.hidden_n):self.input_weights[i][j] += learn * hidden_deltas[j] * self.input_cells[i]error = 0for o in range(len(label)):error += 0.5 * (label[o] - self.output_cells[o]) ** 2return errordef train(self,cases,labels,limit = 100,learn = 0.05):for i in range(limit):error = 0for i in range(len(cases)):label = labels[i]case = cases[i]error += self.back_propagate(case, label, learn)passdef test(self):cases = [[0, 0],[0, 1],[1, 0],[1, 1],]labels = [[0], [1], [1], [0]]self.setup(2, 5, 1)self.train(cases, labels, 1000000, 0.05)for case in cases:print(self.predict(case))
if __name__ == '__main__':nn = BPNeuralNetwork()nn.test()

运行结果:原有的训练结果不太理想,直接把训练次数后面加了2个0,效果好多了~
请添加图片描述

这篇关于【自学记录】【Pytorch2.0深度学习从零开始学 王晓华】第四章 深度学习的理论基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870153

相关文章

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

JavaScript装饰器从基础到实战教程

《JavaScript装饰器从基础到实战教程》装饰器是js中一种声明式语法特性,用于在不修改原始代码的情况下,动态扩展类、方法、属性或参数的行为,本文将从基础概念入手,逐步讲解装饰器的类型、用法、进阶... 目录一、装饰器基础概念1.1 什么是装饰器?1.2 装饰器的语法1.3 装饰器的执行时机二、装饰器的

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

Java枚举类型深度详解

《Java枚举类型深度详解》Java的枚举类型(enum)是一种强大的工具,它不仅可以让你的代码更简洁、可读,而且通过类型安全、常量集合、方法重写和接口实现等特性,使得枚举在很多场景下都非常有用,本文... 目录前言1. enum关键字的使用:定义枚举类型什么是枚举类型?如何定义枚举类型?使用枚举类型:2.

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础