【自学记录】【Pytorch2.0深度学习从零开始学 王晓华】第四章 深度学习的理论基础

本文主要是介绍【自学记录】【Pytorch2.0深度学习从零开始学 王晓华】第四章 深度学习的理论基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

4.3.5 反馈神经网络原理的Python实现

遇到的疑问:

1、对神经网络前向计算中,关于系数矩阵W的讨论。

上一章讲到了层结构是【out,in】,所以我觉得在计算Y=WX+b的时候,W矩阵也应该是【out,in】的形状。但是该代码(或者正规代码实现流程)不是的,他是一个这样的结构:
请添加图片描述
请添加图片描述
所以,W矩阵还是【in,out】结构,a1=X1W11+X2W12+b1,为了计算a1,会以列优先循环W矩阵:

 for j in range(self.hidden_n):total = 0.0for i in range(self.input_n):total += self.input_cells[i] * self.input_weights[i][j] #列优先循环W矩阵          

以上self.input_weights[i][j]代码:
j=1,依次输出(1,1),(2,1),对应W11,W12
j=2,依次输出(1,2),(2,2),对应W21,W22
j=3,依次输出(1,3),(2,3),对应W31,W32

以下是神经网络前向传播函数:

 def predict(self,inputs):for i in range(self.input_n - 1):self.input_cells[i] = inputs[i]for j in range(self.hidden_n):total = 0.0for i in range(self.input_n):total += self.input_cells[i] * self.input_weights[i][j]self.hidden_cells[j] = sigmoid(total)for k in range(self.output_n):total = 0.0for j in range(self.hidden_n):total += self.hidden_cells[j] * self.output_weights[j][k]self.output_cells[k] = sigmoid(total)return self.output_cells[:]#浅拷贝

2、有关self.output_cells[:]浅拷贝

神经网络前向传播函数最后使用 return self.output_cells[:] 而不是 return self.output_cells 的主要目的是返回 self.output_cells 的一个浅拷贝(shallow copy),而不是原始对象的引用。这意味着调用者将获得输出值的一个新列表,而不是对原始列表的引用。这可以确保原始 self.output_cells 列表的内部状态在函数返回后不会被意外修改,从而保持对象的封装性和数据的安全性。

源码\第四章\4_3.py

import numpy as np
import math
import random
def rand(a, b):return (b - a) * random.random() + a
def make_matrix(m,n,fill=0.0):mat = []for i in range(m):mat.append([fill] * n)return mat
def sigmoid(x):return 1.0 / (1.0 + math.exp(-x))
def sigmod_derivate(x):return x * (1 - x)
class BPNeuralNetwork:def __init__(self):self.input_n = 0self.hidden_n = 0self.output_n = 0self.input_cells = []self.hidden_cells = []self.output_cells = []self.input_weights = []self.output_weights = []def setup(self,ni,nh,no):self.input_n = ni + 1 #+1是加了一个隐藏层self.hidden_n = nhself.output_n = noself.input_cells = [1.0] * self.input_nself.hidden_cells = [1.0] * self.hidden_nself.output_cells = [1.0] * self.output_nself.input_weights = make_matrix(self.input_n,self.hidden_n)####这里,权重矩阵设定的是【in,out】self.output_weights = make_matrix(self.hidden_n,self.output_n)####这里,权重矩阵设定的是【in,out】# random activatefor i in range(self.input_n):for h in range(self.hidden_n):self.input_weights[i][h] = rand(-0.2, 0.2)for h in range(self.hidden_n):for o in range(self.output_n):self.output_weights[h][o] = rand(-2.0, 2.0)def predict(self,inputs):for i in range(self.input_n - 1):self.input_cells[i] = inputs[i]for j in range(self.hidden_n):total = 0.0for i in range(self.input_n):total += self.input_cells[i] * self.input_weights[i][j]self.hidden_cells[j] = sigmoid(total)for k in range(self.output_n):total = 0.0for j in range(self.hidden_n):total += self.hidden_cells[j] * self.output_weights[j][k]self.output_cells[k] = sigmoid(total)return self.output_cells[:]#浅拷贝def back_propagate(self,case,label,learn):self.predict(case)#计算输出层的误差output_deltas = [0.0] * self.output_nfor k in range(self.output_n):error = label[k] - self.output_cells[k]output_deltas[k] = sigmod_derivate(self.output_cells[k]) * error#误差项#计算隐藏层的误差hidden_deltas = [0.0] * self.hidden_nfor j in range(self.hidden_n):error = 0.0for k in range(self.output_n):error += output_deltas[k] * self.output_weights[j][k]hidden_deltas[j] = sigmod_derivate(self.hidden_cells[j]) * error#更新输出层权重for j in range(self.hidden_n):for k in range(self.output_n):self.output_weights[j][k] += learn * output_deltas[k] * self.hidden_cells[j]#更新隐藏层权重for i in range(self.input_n):for j in range(self.hidden_n):self.input_weights[i][j] += learn * hidden_deltas[j] * self.input_cells[i]error = 0for o in range(len(label)):error += 0.5 * (label[o] - self.output_cells[o]) ** 2return errordef train(self,cases,labels,limit = 100,learn = 0.05):for i in range(limit):error = 0for i in range(len(cases)):label = labels[i]case = cases[i]error += self.back_propagate(case, label, learn)passdef test(self):cases = [[0, 0],[0, 1],[1, 0],[1, 1],]labels = [[0], [1], [1], [0]]self.setup(2, 5, 1)self.train(cases, labels, 1000000, 0.05)for case in cases:print(self.predict(case))
if __name__ == '__main__':nn = BPNeuralNetwork()nn.test()

运行结果:原有的训练结果不太理想,直接把训练次数后面加了2个0,效果好多了~
请添加图片描述

这篇关于【自学记录】【Pytorch2.0深度学习从零开始学 王晓华】第四章 深度学习的理论基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870153

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念