LeetCode-240. 搜索二维矩阵 II【数组 二分查找 分治 矩阵】

2024-04-02 10:20

本文主要是介绍LeetCode-240. 搜索二维矩阵 II【数组 二分查找 分治 矩阵】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LeetCode-240. 搜索二维矩阵 II【数组 二分查找 分治 矩阵】

  • 题目描述:
  • 解题思路一:从左下角或者右上角元素出发,来寻找target。
  • 解题思路二:右上角元素,代码
  • 解题思路三:暴力也能过
  • 解题思路四:二分查找

题目描述:

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

每行的元素从左到右升序排列。
每列的元素从上到下升序排列。

示例 1:
在这里插入图片描述
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true
示例 2:
在这里插入图片描述
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false

提示:

m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
-109 <= matrix[i][j] <= 109
每行的所有元素从左到右升序排列
每列的所有元素从上到下升序排列
-109 <= target <= 109

解题思路一:从左下角或者右上角元素出发,来寻找target。

如下图所示,我们将矩阵逆时针旋转 45° ,并将其转化为图形式,发现其类似于 二叉搜索树 ,即对于每个元素,其左分支元素更小、右分支元素更大。因此,通过从 “根节点” 开始搜索,遇到比 target 大的元素就向左,反之向右,即可找到目标值 target 。
在这里插入图片描述

“根节点” 对应的是矩阵的 “左下角” 和 “右上角” 元素,本文称之为 标志数 ,以 matrix 中的 左下角元素 为标志数 flag ,则有:

  1. 若 flag > target ,则 target 一定在 flag 所在 行的上方 ,即 flag 所在行可被消去。
  2. 若 flag < target ,则 target 一定在 flag 所在 列的右方 ,即 flag 所在列可被消去。

“右上角” 元素 也是类似

class Solution:def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:i, j = len(matrix) - 1, 0while i >= 0 and j < len(matrix[0]):if matrix[i][j] > target: i -= 1elif matrix[i][j] < target:j += 1else:return Truereturn False

时间复杂度:O(n+m)
空间复杂度:O(1)

解题思路二:右上角元素,代码

class Solution:def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:i, j = 0, len(matrix[0]) - 1while i < len(matrix) and j >= 0:if matrix[i][j] > target:j -= 1elif matrix[i][j] < target:i += 1else:return Truereturn False

时间复杂度:O(n+m)
空间复杂度:O(1)

解题思路三:暴力也能过

class Solution:def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:for row in matrix:for element in row:if element == target:return Truereturn False

时间复杂度:O(nm)
空间复杂度:O(1)

解题思路四:二分查找

class Solution:def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:for row in matrix:idx = bisect.bisect_left(row, target)if idx < len(row) and row[idx] == target:return Truereturn False

时间复杂度:O(mlogn)
空间复杂度:O(1)

这篇关于LeetCode-240. 搜索二维矩阵 II【数组 二分查找 分治 矩阵】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/869718

相关文章

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2