九度OJ 1042:Coincidence(公共子序列) (DP)

2024-04-02 02:38

本文主要是介绍九度OJ 1042:Coincidence(公共子序列) (DP),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时间限制:1 秒

内存限制:32 兆

特殊判题:

提交:2303

解决:1241

题目描述:

Find a longest common subsequence of two strings.

输入:

First and second line of each input case contain two strings of lowercase character a…z. There are no spaces before, inside or after the strings. Lengths of strings do not exceed 100.

输出:

For each case, output k – the length of a longest common subsequence in one line.

样例输入:
abcd
cxbydz
样例输出:
2
来源:
2008年上海交通大学计算机研究生机试真题

思路:

动态规划,分别设置两个指针,分别从头到尾搜索两个数组,最后得到的就是最大值。

动态规划的关键方程是:

if (a[i] == b[j])
     res[i+1][j+1] = res[i][j]+1;
else
     res[i+1][j+1] = max(res[i+1][j], res[i][j+1]);

代码:

#include <stdio.h>
#include <string.h>#define N 100
#define max(a, b) (((a)>(b)) ? (a) : (b))int main(void)
{int na, nb, i, j;char a[N+1], b[N+1];int res[N+1][N+1];while (scanf("%s%s", a, b) != EOF){na = strlen(a);nb = strlen(b);memset(res, 0, sizeof(res));for (i=0; i<na; i++){for (j=0; j<nb; j++){if (a[i] == b[j])res[i+1][j+1] = res[i][j]+1;elseres[i+1][j+1] = max(res[i+1][j], res[i][j+1]);}}/*for (i=1; i<=na; i++){for (j=1; j<=nb; j++){printf("%d ", res[i][j]);}printf("\n");}*/printf("%d\n", res[na][nb]);}return 0;
}
/**************************************************************Problem: 1042User: liangrx06Language: CResult: AcceptedTime:0 msMemory:912 kb
****************************************************************/


这篇关于九度OJ 1042:Coincidence(公共子序列) (DP)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/868751

相关文章

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

poj1330(LCA最近公共祖先)

题意:求最近公共祖先 思路:之前学习了树链剖分,然后我就用树链剖分的一小部分知识就可以解这个题目了,记录每个结点的fa和depth。然后查找时,每次将depth大的结点往上走直到x = y。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs