通俗读完《Python机器学习及实战:从零开始通往Kaggle竞赛之路》

本文主要是介绍通俗读完《Python机器学习及实战:从零开始通往Kaggle竞赛之路》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性分类器

线性分类:假设特征与分类结果存在线性关系的模型。
良/恶性肿瘤数据预处理
原始数据共有699条,11列不同的数值:第一列是id,中间9列为肿瘤的主要特征,并且被量化到1~10之间,最后一列为肿瘤的类型:2表示良性,4为恶性。数据中包含16个缺失值,并且用“?”标出。

导入工具包
import pandas as pd 
import numpy as  np
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_reportcolumn_names = ['Sample code number','Clump Thickness','Uniformity of Cell Size','Uniformity of Cell shape','Marginal Adhesion','Single Epithelial Cell Size','Brae Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']
data = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data',names = column_names)
#data = data.replace(to_replace='?',value = np.nan)
#用np.nan替换掉数据中的? 丢弃数据中数据缺失的行 
data = data.replace('?',np.nan)
data = data.dropna(how ='any')
#data.shape 
#print(data)      
#print(data.shape) 
#print(data[column_names[10]]) 
#将数据切分成1:3,分别做测试及训练集
X_train, X_test, y_train, y_test = train_test_split(data[column_names[1:10]],data[column_names[10]],test_size=0.25,random_state=33) 
print(y_train.value_counts()) 
print(y_test.value_counts())
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)lr = LogisticRegression()
sgdc =SGDClassifier()
lr.fit(X_train,y_train)
lr_y_predict = lr.predict(X_test)
print(lr_y_predict)
sgdc.fit(X_train,y_train)
sgdc_y_predict = sgdc.predict(X_test)
print(sgdc_y_predict)print('Accuracy of LR Classifier:', lr.score(X_test,y_test))
print(classification_report(y_test,lr_y_predict,target_names=['Benign','Malignant']))print('Accuracy of SGD Classifier:',sgdc.score(X_test,y_test))
print(classification_report(y_test,sgdc_y_predict,target_names=['Bengin','Malignant']))

这篇关于通俗读完《Python机器学习及实战:从零开始通往Kaggle竞赛之路》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/868632

相关文章

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py