七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b,对GPT4胜率超过80%

本文主要是介绍七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b,对GPT4胜率超过80%,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模型训练

Mixtral-8x7b地址:魔搭社区

GitHub: hiyouga/LLaMA-Factory: Unify Efficient Fine-tuning of 100+ LLMs (github.com)

环境配置

git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd /root/path/LLaMA-Factory
pip install -r requirements.txt

有些得单独版本对齐,本人使用的是cuda11.8

pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
pip install bitsandbytes==0.41.3
# 下载对应版本 https://github.com/Dao-AILab/flash-attention/releases
pip install flash_attn-2.5.2+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

训练代码

python src/train_bash.py \--stage sft \--do_train True \--model_name_or_path /root/weights/Mixtral-8x7B-Instruct-v0.1 \--finetuning_type lora \--quantization_bit 4 \--template mistral \--flash_attn True \--dataset_dir data \--dataset paper_review_data \--cutoff_len 12288 \--learning_rate 5e-05 \--num_train_epochs 3.0 \--max_samples 1000000 \--per_device_train_batch_size 16 \--gradient_accumulation_steps 1 \--lr_scheduler_type cosine \--max_grad_norm 0.3 \--logging_steps 10 \--warmup_steps 0 \--lora_rank 128 \--save_steps 1000 \--lora_dropout 0.05 \--lora_target q_proj,o_proj,k_proj,v_proj,down_proj,gate_proj,up_proj \--output_dir saves/Mixtral-8x7B-Chat/lora/train_2024-03-23 \--fp16 True \--plot_loss True

模型推理

部署API接口

这里使用lora执行src/api_demo.py时会出现一个问题:

NotImplementedError: Cannot copy out of meta tensor; no data! · Issue #2940 · hiyouga/LLaMA-Factory (github.com)

解决方案:训练时使用了--quantization_bit 4 和 --flash_attn True,这里也要使用统一的才行。

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \--model_name_or_path /root/weights/Mixtral-8x7B-Instruct-v0.1 \--adapter_name_or_path /root/path/saves/Mixtral-8x7B-Chat/lora/train_train_2024-03-23 \--template mistral \--finetuning_type lora \--quantization_bit 4 \--flash_attn True

推理所需显存为34318MiB

调用API接口

更多见七月的《大模型商用项目之审稿GPT微调实战》

这篇关于七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b,对GPT4胜率超过80%的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/868357

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加