C++AVL树拓展之红黑树原理及源码模拟

2024-04-01 14:52

本文主要是介绍C++AVL树拓展之红黑树原理及源码模拟,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:我们之前已经从零开始掌握AVL树http://t.csdnimg.cn/LaVCCicon-default.png?t=N7T8http://t.csdnimg.cn/LaVCC

现在我们将继续学习红黑树的原理并且实现插入等功能,学习本章的前提要求是掌握排序二叉树和AVL树,本章不再提及一些基础知识,防止本文结构臃肿,对二叉排序树和AVL树有兴趣的可以阅读上面链接的文章,很多人可能说既生瑜何生亮,有了AVL树为什么还要红黑树,当然是因为红黑树的效率更高啦,AVL树的平黑太过于依赖平衡因子,稍微不平衡就会旋转,而大量的旋转自然降低了效率,红黑树相对AVL树没有那么平衡,旋转次数也少了,但是查询效率略微的降低就减少了不少的旋转,何乐而不为呢?更何况C++是一门以高效出名的语言。

目录

一,红黑树的基本准则

二,红黑树为什么是平衡的

三,代码实现

1)敲前准备

2)查找

3)插入

4)迭代器


一,红黑树的基本准则

希望大家先记住红黑树本质还是一颗二叉排序树。在二叉排序树的基础上,AVL树是加了平衡因子,来保持树的结构平衡,红黑树则是通过给每个结点标记颜色达到相对平衡。(为什么要平衡是为了提高查询效率,不懂看链接博客)

1)每个结点的颜色不是黑色就是红色

2)红黑树根节点的颜色是黑色的(这条规定会在后面平衡的调整那里给出原因,现在记住即可)

3)红黑树上不能出现两个相邻的红色结点(红黑树平衡的重要准则)

4)每个叶子结点都是黑色的。(注意这里的叶子结点指的是NULL结点)

5)每条路径上的黑色结点的数目都是一样多的

6)最短路径小于最长路径的两倍(这个其实不是原则,是一个推论,下面会讲解,不必纠结)

二,红黑树为什么是平衡的

接下来我们将讨论一下为什么红黑树是平衡的。

讨论这个性质我们要从上面说的红黑树的基本准则入手。红黑树不过三种情况我们分类讨论

1)结点的颜色全是黑色

如果红黑树的结点颜色全是黑色,那么这棵树必定是一个完全二叉树,因为如果不是完全二叉树,红黑树的结点有全是黑色,那就违背了上面的第五条原则(每条路径上的黑色结点的数目都是一样多的)。

得出来红黑树的结点全是黑色的则次数必定平衡。

2)除了根节点其他结点都是红色

这种情况只有四种情况,我直接给大家画出来,记住不能违背上面的第三个准则(红黑树上不能出现两个相邻的红色结点)。

     

如果再插入结点必然出现黑色结点,不满足我们这种情况了。

3)既有红色结点也有黑色结点

首先根据上面的准则,每条路径上的黑色结点数目一样,红色结点不能相邻出现,也就是两个红色结点之间必然有若干个黑色结点,然而每条路径上黑色结点的数目已经固定了,我们现在看极端情况,也就是最短的路径一个红色结点也没有,最长的路径上每个红色结点之间只有一个黑色结点。

从上面的图可以得到最长路径绝对不会超过最短路径的两倍,因为红色结点的数目不会超过黑色结点 ,当然上面是把路径单独列出来了来,实际上是树状结构。

综上所述红黑树的是一个相对平衡的二叉树。

三,代码实现

1)敲前准备

首先我们需要一个标记位来记录当前结点的颜色,我们采用枚举类型,可读性强

enum color {red,black
};

结点里面的内容应该包括什么呢?data存储数据,三个指针,一个parent指针,一个leftchild和rightchild指针,结构体里面应该包括我们刚刚的枚举。

template<class T>
struct RBTreeNode {RBTreeNode(T data) {_pParent = NULL;_pLeft = NULL;_pRight = NULL;_data = data;c = red;}RBTreeNode() {_pParent = NULL;_pLeft = NULL;_pRight = NULL;c = red;}color c;RBTreeNode* _pParent;RBTreeNode* _pLeft;RBTreeNode* _pRight;T _data;
};

那么大致框架就搭起来了

enum color {red,black
};
template<class T>
struct RBTreeNode {RBTreeNode(T data) {_pParent = NULL;_pLeft = NULL;_pRight = NULL;_data = data;c = red;}RBTreeNode() {_pParent = NULL;_pLeft = NULL;_pRight = NULL;c = red;}color c;RBTreeNode* _pParent;RBTreeNode* _pLeft;RBTreeNode* _pRight;T _data;
};
template<class T>
class RBTree
{
private:Node* _pHead; //哨兵位size_t _size;//结点个数
};
2)查找

查找还是一个老套路,大于当前结点找右边,小于当前结点找左边,直到找到或者为空,属实是老生常谈了,这里不过多介绍。

// 检测红黑树中是否存在值为data的节点,存在返回该节点的地址,否则返回nullptrNode* _Find(const T& data) {Node* cur = _pHead->_pParent;//从根节点开始while (cur&&cur!=_pHead) {if (data < cur->_data)  //小于找左边cur = cur->_pLeft;else if (data > cur->_data) {   //大于找右边cur = cur->_pRight;}elsereturn cur;   //找到返回}return NULL;  //找不到}
3)插入

插入的第一件事就是找到应该插入的位置,这个简单,这个逻辑和查找一样。插入之后的颜色应该是红色还是黑色值得商榷,但仔细考虑,如果插入黑色的话就违背了每条路径上的黑色结点个数相等的原则,插入红色则可能碰到连续的红色结点,那到底是插入红色还是黑色呢?我们现在来讨论一下。

如果插入黑色结点的话,那么完全是牵一发而动全身,因为根据结点规则每条路径上的黑色结点的数目都是一样多的,我们需要把所有路径的黑色结点数目全部增加一个,这显然不是一个明智之举。那我们只剩下一个选择了,插入的新结点默认为红色结点,接下来我们需要分情况讨论。

1)插入结点的父亲结点是黑色,如果是黑色插入红色节点不需要改变任何结点,因为完全满足红黑树的规则,既没有连续的红色结点,每条路径的黑色结点数也都相同。

2)如果是父亲是红色的结点呢?

     注:圆形代表一个结点,长方形代表很多种可能

这种情况我们需要看parent的兄弟结点的颜色了,接下来又要分情况讨论

1)兄弟节点是红色,这种情况我们把两个兄弟节点全变成黑色,把爷爷结点变成红色,然后继续递归往上,往上有两种可能,一种是一直递归到根节点,然后根节点变成红色,最后我们强制把根节点变成黑色就行了,并不会违背任何原则。当然可能中途兄弟节点是黑色,这个时候我们需要使用下面情况2的旋转来弥补了。

2)兄弟节点是黑色的时候,证明单纯靠变色已经无法将这颗红黑树拉上正途了,我们不得已采取暴力手段旋转了,旋转结果仍然需要遵守红黑树原则。这里面又分为好几种情况

旋转具体详细过程,参考我的往期博客

http://t.csdnimg.cn/a13umicon-default.png?t=N7T8http://t.csdnimg.cn/a13um

1)左旋(之所以每个节点下面都可能有节点是因为,新插入的节点不可能碰到这种情况,只可能是情况1向上递归解决的时候出现的)

void RotateL(Node* pParent){Node* pSubR = pParent->_pRight;Node* pSubRL = pSubR->_pLeft;pParent->_pRight = pSubRL; //防止访问空结点if (pSubRL)pSubRL->_pParent = pParent;pSubR->_pLeft = pParent;Node* pPParent = pParent->_pParent;pSubR->_pParent = pPParent;pParent->_pParent = pSubR;if (pPParent == _pHead)     //根节点单独处理_pHead->_pParent = pSubR;else{if (pParent == pPParent->_pLeft)pPParent->_pLeft = pSubR;elsepPParent->_pRight = pSubR;}}

2)右旋

 

void RotateR(Node* pParent){Node* pSubL = pParent->_pLeft;Node* pSubLR = pSubL->_pRight;pParent->_pLeft = pSubLR;if (pSubLR)       //防止访问空结点pSubLR->_pParent = pParent;pSubL->_pRight = pParent;Node* pPParent = pParent->_pParent;pParent->_pParent = pSubL;pSubL->_pParent = pPParent;if (pPParent == _pHead)      //根节点单独处理_pHead->_pParent = pSubL;else{if (pParent == pPParent->_pLeft)pPParent->_pLeft = pSubL;elsepPParent->_pRight = pSubL;}}

3)右旋加左旋

4)左旋加右旋

 双旋代码复用单旋就行了

插入代码:

bool _Insert(const T& data) {if (_Find(data)) {cout << "元素已经存在" << endl;return false;}//插入第一个元素的时候if (_pHead->_pParent == _pHead) {Node* root = new Node(data);root->c = black;root->_pParent = _pHead;_pHead->_pParent = root;_pHead->_pLeft = root;_pHead->_pLeft = root;return 1;}Node* cur = _pHead->_pParent;Node* parent=cur;//找该插入的位置while (cur&&cur!=_pHead) {parent = cur;if (cur->_data > data) {cur = cur->_pLeft;}else if (cur->_data < data) {cur = cur->_pRight;}else {cout << "值:" << data << "已经存在" << endl;return 0;}}//插入cur = new Node(data);if (parent->_data > data) {parent->_pLeft = cur;cur->_pParent = parent;}else {parent->_pRight = cur;cur->_pParent = parent;}//调整Node* gparent = parent->_pParent;Node* uncle = _pHead;while (gparent&&parent->c != black) {if (gparent->_pLeft == parent) {uncle = gparent->_pRight;}else {uncle = gparent->_pLeft;}if (!uncle || uncle->c == black)break;else {uncle->c = black;gparent->c = red;parent->c = black;}cur = gparent;;parent = cur->_pParent;gparent = parent->_pParent;}if (cur == parent->_pLeft && parent == gparent->_pLeft && (uncle == NULL || uncle->c == black)) {RRotate(gparent); //左旋情况parent->c = black;gparent->c = red;}if (cur == parent->_pRight && parent == gparent->_pRight && (uncle == NULL || uncle->c == black)) {LRotate(gparent);  //右旋情况parent->c = black;gparent->c = red;}if (cur == parent->_pLeft && parent == gparent->_pRight && (uncle == NULL || uncle->c == black)) {RRotate(parent); //右左双旋LRotate(gparent);cur->c = black;gparent->c = red;}if (cur == parent->_pRight&& parent == gparent->_pLeft && (uncle == NULL || uncle->c == black)) {LRotate(parent);  //左右双旋RRotate(gparent);cur->c = black;gparent->c = red;}_pHead->_pLeft = LeftMost();_pHead->_pRight = RightMost();RightMost()->_pRight = _pHead;_pHead->_pParent->c = black;_size++;return 1;}
4)迭代器

迭代器属于老生常谈了,就是运算符重载,我们这里不做过多讲解,但是我们这里面有两个难点,就是++,--拿的是哪个结点?

首先看4的下一个下一个结点是什么(也就是++)?如果右子树不为空的话,下一个结点是右子树的最左结点。

那7的下一个结点是什么呢?当右子树为空时,一直递归向上直到这个这颗子树是某个结点的左孩子,这个结点就是下一个结点。

struct RBTreeIterator
{typedef RBTreeNode<T> Node;typedef typename RBTreeIterator<T> Self;
public:
Self& operator++() {if (_pNode->_pRight != NULL) //右子树不为空的情况下{_pNode = _pNode->_pRight;if (_pNode->_pParent->_pParent == _pNode) {RBTreeIterator<T> ret(_pNode);return ret;}while (_pNode->_pLeft != NULL)_pNode = _pNode->_pLeft;RBTreeIterator<T> ret(_pNode);return ret;}while (_pNode != _pNode->_pLeft) {       //一直递归向上直到这个这颗子树是某个结点的左孩子if (_pNode->_pParent->_pParent == _pNode) {RBTreeIterator<T> ret(NULL);return ret;}_pNode = _pNode->_pParent;}RBTreeIterator<T> ret(_pNode->_pParent);return ret;}
};

那--呢?也就是上一个结点。例如4,当左孩子不为空时,左子树的最右结点就是你的上一个结点。

如果最子树为空呢?例如5,那就一直向上递归,直到这颗子树是某个结点的右孩子,这个结点就是上一个结点。

struct RBTreeIterator
{typedef RBTreeNode<T> Node;typedef typename RBTreeIterator<T> Self;
public:	
Self& operator--() {if (_pNode->_pLeft != NULL) { //左子树为空的情况_pNode = _pNode->_pLeft;while (_pNode->_pRight) {_pNode = _pNode->_pRight;}Self a(_pNode);return a;}else {   //一直向上递归,直到这颗子树是某个结点的右孩子while (_pNode->_pParent->_pRight != _pNode) {if (_pNode->_pParent->_pParent == _pNode) {RBTreeIterator<T> ret(NULL);return ret;}_pNode = _pNode->_pParent;}Self a(_pNode->_pParent);return a;}}
};

其他的运算符重载没啥难度,大家完全可以靠自己敲出来。

这篇博客花了作者大量心思,希望大家你点赞+收藏+转发。如果博客有不对的地方,可以评论区讨论。

这篇关于C++AVL树拓展之红黑树原理及源码模拟的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/867443

相关文章

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元