决策树 (Decision Tree) 原理简述及相关算法(ID3,C4.5)

2024-04-01 06:38

本文主要是介绍决策树 (Decision Tree) 原理简述及相关算法(ID3,C4.5),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Decision Tree 决策树:
决策树是属于机器学习监督学习分类算法中比较简单的一种,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 
下面来看个范例,就能很快理解了。

范例:
假设,我们有以下数据,表示当天是否回去玩高尔夫:

用决策树建立起来后,能得到这样的模型:

至此可以看出,说白了,决策树就是If()语句的层层嵌套,知道最后能总结出点什么。(原谅我实在不会描述点什么,不过看了这图应该对决策树有个大致的了解了吧。)

决策树中的元素:
决策树中的元素基本和树中的差不多。
最上面的一个称为根节点,如上图的Outlook,用数据中的属性作为根节点或是节点,如Humidity,Windy等。
分支使用的是节点属性中的离散型数据,如果数据是连续型的,也需要转化成离散型数据才能在决策树中展示,如上图将Outlook属性作为根节点,sunny,overcast,rain作为该节点的三个分支。

信息熵 Entropy:
现在,问题来了,在算法中如何确定使用数据的哪个属性作为根节点或是节点。当然不能随便选,我们追求的一直都是最优解,即使是局部最优。因此我们需要引入信息熵这个概念。
1948年,香农提出了“信息熵”概念。一条信息的信息量大小和它的不确定性有直接的关系。我们对一样东西越是一无所知,想要了解它就需要越多的信息。
举个栗子,如果我随机一个1-8之间的数字,给你猜,只回答你是或否。那最好的猜测方式应该是,“是不是在1-4之间?”,如果得到否,我们就知道在5-8之间,如果得到是,我们继续猜“是否在1-2之间?”。这样的话,我们只需要猜3次就能知道这个数到底是几。转化为信息熵公式就是:

根据这公式和例子,我们能得到结果是3,这是因为我们对1-8数字可能被选取的概率一无所知,如果比如说1-8选取概率并不是均匀分布的,我们就能更快的找到相应的数字,因此信息熵也会相应的变小。
总结下,如果一个变量的不确定越大,熵值也越大。

决策树归纳算法 ID3:
Information Gain:
又称信息获取量或是信息增益,将样本的所有属性分割开,分别计算,熵之和,信息增益就是二者的差值。

简单理解就是,没有属性A时候的信息量-有A时候的信息量。

举个栗子,假设我们有以下数据,买电脑的人与不买电脑的人:


可以看出,在此数据中,总数据量14个,买电脑的人9个,不买电脑的人5个,因此,Info(D)计算方式如下:

然后,我们想计算下age属性的信息量,<30的5人,<30并买电脑的2人,不买的3人,其余31-40,>40方法同理,因此计算方式如下:


因此Gain(age) = 0.940-0.694 = 0.246
再对比下其余属性Gain(Income)=0.029,Gain(Student)=0.151,Gain(Credit_rating)=0.048,因此可以看出,age属性信息量最大,因此选择age属性作为根节点。计算节点方法同理。

C4.5算法:
ID3算法存在一个问题,就是偏向于多值属性,例如,如果存在唯一标识属性ID,则ID3会选择它作为分裂属性,这样虽然使得划分充分纯净,但这种划分对分类几乎毫无用处。ID3的后继算法C4.5使用增益率(gain ratio)的信息增益扩充,试图克服这个偏倚。
C4.5算法首先定义了“分裂信息”,其定义可以表示成:

其中各符号意义与ID3算法相同,然后,增益率被定义为:

C4.5选择具有最大增益率的属性,ID3选择最大信息获取量的属性,其余没啥差别,也就不赘述了

决策树其余算法:
决策树其余算法还有C4.5,CART算法,共同点为都是贪心算法,区别为度量方式不同,就比如ID3使用了信息获取量作为度量方式,而C4.5使用最大增益率。

如果属性用完了怎么办:
如果属性全部用完,但是数据还不是纯净集怎么办,即集合内的元素不属于同一类别。就比如上述买电脑的例子中,如果age,Credit_rating,Student,Income都相等,但是有人买电脑,有人不买电脑,那决策树怎么决策?在这种情况下,由于没有更多信息可以使用了,一般对这些子集进行“多数表决”,即使用此子集中出现次数最多的类别作为此节点类别,然后将此节点作为叶子节点。

剪枝:
作为决策树中一种放置Overfitting过拟合的手段,分为预剪枝和后剪枝两种。
预剪枝:当决策树在生成时当达到该指标时就停止生长,比如小于一定的信息获取量或是一定的深度,就停止生长。
后剪枝:当决策树生成完后,再进行剪枝操作。优点是克服了“视界局限”效应,但是计算量代价较大。

决策树优点:
直观,便于理解,在相对短的时间内能够对大型数据源做出可行且效果良好的结果,能够同时处理数据型和常规型属性。

决策树缺点:
可规模性一般,连续变量需要划分成离散变量,容易过拟合。
 

伪代码:

 

这篇关于决策树 (Decision Tree) 原理简述及相关算法(ID3,C4.5)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866464

相关文章

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实