深度学习代码|MSE损失的代码实现

2024-04-01 04:12

本文主要是介绍深度学习代码|MSE损失的代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、MSE代码手动实现
    • (一)导入相关库
    • (二)计算均方误差损失函数
    • (三)示例使用
  • 二、Pytorch中MSELoss函数的接口
    • (一)参数
    • (二)使用示例
    • (三)反向传播


一、MSE代码手动实现

(一)导入相关库

NumPy 是 Python 语言的一个第三方库,支持大量高维度数组与矩阵运算。此外,NumPy 也针对数组运算提供大量的数学函数。机器学习涉及到大量对数组的变换和运算,NumPy 就成了必不可少的工具之一。

import numpy as np

(二)计算均方误差损失函数

参数:

  • y_true:真实值的数组,可以是一维或多维
  • y_pred:预测值的数组,形状应与y_true相同

返回:

  • loss:计算得到的loss值
def mse_loss(y_true,y_pred):#计算真实值和预测值之间的差异diff=y_true-y_pred#计算差值的平方sq_diff=np.square(diff)#计算均方误差,即平方差的平均值#使用np.mean计算平均值,axis=0表示沿着第一个轴(通常是样本维度)计算loss=np.mean(sq_diff,axis=0)return loss

(三)示例使用

y_true=np.arrray([1,2,3,4])
y_pred=np.array([1.5,2.1,2.9,4.2])loss=mse_loss(y_true,y_pred)
print("MSE Loss:",loss)

二、Pytorch中MSELoss函数的接口

该函数默认用于计算两个输入对应元素差值平方和的均值。具体地,在深度学习中,可以使用该函数用来计算两个特征图的相似性。

torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’)

(一)参数

  • 当reduce=True时,若size_average=True,则返回一个batch中所有样本损失的均值,结果为标量。注意,对于MESLoss函数来说,首先对该batch中的所有样本损失进行逐元素均值操作,然后对得到N个值再进行均值操作即得到返回值(假设批大小为N,即该batch中共有N个样本)
  • 当reduce=True时,若size_average=False,则返回一个batch中所有样本损失的和,结果为标量。注意,对于MESLoss函数来说,首先对该batch中的所有样本损失进行逐元素求和操作,然后对得到N个值再进行求和操作即得到返回值(假设批大小为N,即该batch中共有N个样本)
  • 当reduce=False时,则size_average参数失效,即无论size_average参数为False还是True,效果都是一样的。此时,函数返回的是一个batch中每个样本的损失,结果为向量。
  • reduction参数包含了reduce和size_average参数的双重含义,这也是为什么reduce和size_average参数将在后续版本中被弃用的原因。

(二)使用示例

首先假设有三个数据样本分别经过神经网络运算,得到三个输出与其标签分别是:

y_pre = torch.Tensor([[1, 2, 3],[2, 1, 3],[3, 1, 2]])y_label = torch.Tensor([[1, 0, 0],[0, 1, 0],[0, 0, 1]])

当reduction=‘none’时,相当于reduce=False;

criterion1 = nn.MSELoss(reduction="none")
loss1 = criterion1(x, y)
print(loss1)

输出结果为:

tensor([[0., 4., 9.],
[4., 0., 9.],
[9., 1., 1.]])

当reduction=‘sum’时,相当于reduce=True且size_average=False;

criterion2 = nn.MSELoss(reduction="mean")
loss2 = criterion2(x, y)
print(loss2)

输出结果为:

tensor(4.1111)

当reduction=‘mean’时,相当于reduce=True且size_average=True;

criterion3 = nn.MSELoss(reduction="sum")
loss3 = criterion3(x, y)
print(loss3)

输出结果为:

tensor(37.)

(三)反向传播

一般在反向传播时,都是先求loss,再使用loss.backward()求loss对每个参数 w_ij和b的偏导数(也可以理解为梯度)。但是只有标量才能执行backward()函数,因此在反向传播中reduction不能设为"none"。

  • 若设置为"sum",则有Loss=loss_1+loss_2+loss_3,表示总的Loss由每个实例的loss_i构成,在通过Loss求梯度时,将每个loss_i的梯度也都考虑进去了。
  • 若设置为"mean",则相比"sum"相当于Loss变成了Loss*(1/i),这在参数更新时影响不大,因为有学习率a的存在。

如果只想在batch上做平均,可以这样写:

loss_fn = torch.nn.MSELoss(reduction="sum")
loss = loss_fn(pred, y) / pred.size(0)

参考:
手撕算法面试二,手撕MSE损失
pytorch官网介绍
【PyTorch】MSELoss的详细理解(含源代码)

这篇关于深度学习代码|MSE损失的代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866178

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco