LLM-在CPU环境下如何运行ChatGLM-6B

2024-04-01 02:44
文章标签 运行 环境 llm cpu 6b chatglm

本文主要是介绍LLM-在CPU环境下如何运行ChatGLM-6B,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ChatGLM-6B-INT4 是 ChatGLM-6B 量化后的模型权重。具体的,ChatGLM-6B-INT4 对 ChatGLM-6B 中的 28 个 GLM Block 进行了 INT4 量化,没有对 Embedding 和 LM Head 进行量化。量化后的模型理论上 6G 显存(使用 CPU 即内存)即可推理,具有在嵌入式设备(如树莓派)上运行的可能。

在 CPU 上运行时,会根据硬件自动编译 CPU Kernel ,请确保已安装 GCC 和 OpenMP (Linux一般已安装,对于Windows则需手动安装),以获得最佳并行计算能力。

在CPU环境下如何运行ChatGLM-6B

下载

 huggingface-cli.exe download \--local-dir-use-symlinks False \--resume-download THUDM/chatglm-6b-int4 \--local-dir /root/jupyter/models/chatglm-6b-int4

安装依赖

# 安装sentencepiece
pip download -d /root/jupyter/pip sentencepiece
pip install --no-index --find-links=/root/jupyter/pip sentencepiece# 调整transformers的版本
# 版本过高,会报:AttributeError: 'ChatGLMTokenizer' object has no attribute 'sp_tokenizer'
pip download -d /root/jupyter/pip transformers==4.33.2
pip install --no-index --find-links=/root/jupyter/pip transformers==4.33.2#调整torch的版本
# 版本过高,会报:/opt/conda/lib/python3.9/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node # is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
# torch.utils._pytree._register_pytree_node(
pip download -d /root/jupyter/pip torch==1.13.1
pip install --no-index --find-links=/root/jupyter/pip  torch==1.13.1#安装cpm_kernels
pip download -d /root/jupyter/pip cpm_kernels
pip install --no-index --find-links=/root/jupyter/pip cpm_kernels

代码示例

from transformers import AutoTokenizer, AutoModeltokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).cpu().float()response, history = model.chat(tokenizer, "你好", history=[])
print(response)

参考

THUDM/chatglm-6b-int4 discussions
THUDM/chatglm-6b-int4
ChatGLM3 PROMPT
ChatGLM-6B的CPU版本如何安装

这篇关于LLM-在CPU环境下如何运行ChatGLM-6B的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866025

相关文章

Java终止正在运行的线程的三种方法

《Java终止正在运行的线程的三种方法》停止一个线程意味着在任务处理完任务之前停掉正在做的操作,也就是放弃当前的操作,停止一个线程可以用Thread.stop()方法,但最好不要用它,本文给大家介绍了... 目录前言1. 停止不了的线程2. 判断线程是否停止状态3. 能停止的线程–异常法4. 在沉睡中停止5

Centos环境下Tomcat虚拟主机配置详细教程

《Centos环境下Tomcat虚拟主机配置详细教程》这篇文章主要讲的是在CentOS系统上,如何一步步配置Tomcat的虚拟主机,内容很简单,从目录准备到配置文件修改,再到重启和测试,手把手带你搞定... 目录1. 准备虚拟主机的目录和内容创建目录添加测试文件2. 修改 Tomcat 的 server.X

VSCode配置Anaconda Python环境的实现

《VSCode配置AnacondaPython环境的实现》VisualStudioCode中可以使用Anaconda环境进行Python开发,本文主要介绍了VSCode配置AnacondaPytho... 目录前言一、安装 Visual Studio Code 和 Anaconda二、创建或激活 conda

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Android如何获取当前CPU频率和占用率

《Android如何获取当前CPU频率和占用率》最近在优化App的性能,需要获取当前CPU视频频率和占用率,所以本文小编就来和大家总结一下如何在Android中获取当前CPU频率和占用率吧... 最近在优化 App 的性能,需要获取当前 CPU视频频率和占用率,通过查询资料,大致思路如下:目前没有标准的

在VSCode中本地运行DeepSeek的流程步骤

《在VSCode中本地运行DeepSeek的流程步骤》本文详细介绍了如何在本地VSCode中安装和配置Ollama和CodeGPT,以使用DeepSeek进行AI编码辅助,无需依赖云服务,需要的朋友可... 目录步骤 1:在 VSCode 中安装 Ollama 和 CodeGPT安装Ollama下载Olla

Windows环境下安装达梦数据库的完整步骤

《Windows环境下安装达梦数据库的完整步骤》达梦数据库的安装大致分为Windows和Linux版本,本文将以dm8企业版Windows_64位环境为例,为大家介绍一下达梦数据库的具体安装步骤吧... 目录环境介绍1 下载解压安装包2 根据安装手册安装2.1 选择语言 时区2.2 安装向导2.3 接受协议

SpringBoot基于沙箱环境实现支付宝支付教程

《SpringBoot基于沙箱环境实现支付宝支付教程》本文介绍了如何使用支付宝沙箱环境进行开发测试,包括沙箱环境的介绍、准备步骤、在SpringBoot项目中结合支付宝沙箱进行支付接口的实现与测试... 目录一、支付宝沙箱环境介绍二、沙箱环境准备2.1 注册入驻支付宝开放平台2.2 配置沙箱环境2.3 沙箱

linux环境openssl、openssh升级流程

《linux环境openssl、openssh升级流程》该文章详细介绍了在Ubuntu22.04系统上升级OpenSSL和OpenSSH的方法,首先,升级OpenSSL的步骤包括下载最新版本、安装编译... 目录一.升级openssl1.官网下载最新版openssl2.安装编译环境3.下载后解压安装4.备份