基于随机森林的信用卡满意度模型预测

2024-03-31 12:20

本文主要是介绍基于随机森林的信用卡满意度模型预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于随机森林的信用卡满意度模型预测

本文介绍了如何利用机器学习技术构建信用评分模型,以帮助金融机构评估借款人的信用风险并做出贷款决策。文章首先从数据预处理开始,包括数据读取、清洗和特征工程,以确保数据质量和适用性。接着,通过可视化分析了贷款金额、贷款等级和贷款状态等关键特征,以便更好地理解数据。随后,使用随机森林分类器进行模型训练,并评估了模型在测试集上的性能,包括准确率、精确率、召回率和F1值等指标。最终,通过优化模型并展望未来的研究方向,为金融业务的发展提供了重要参考。

1、数据读取: 我们使用 Pandas 库从 CSV 文件中读取数据集,其中包含了个人贷款信息。

def read_data_from_csv():# 读取数据data = pd.read_csv("data/new_file.csv").sample(n=20000,random_state=42)return data

2、数据清洗: 我们删除了一些与建模无关的特征,如 ‘id’、‘url’、‘desc’、‘member_id’ 等。

    # 删除无关特征,如id,url等data.drop(['id', 'url', 'desc', 'member_id'], axis=1, inplace=True)

3、处理缺失值: 我们使用均值填充了数值型特征中的缺失值,并使用线性插值方法填充了剩余的缺失值。

# 处理缺失值# data.dropna(inplace=True)# df = data.fillna(data.mean())# df.replace([np.inf, -np.inf], np.nan, inplace=True)# df = df.fillna(df.mean())nan_values = data.isnull().values.any()print(nan_values)inf_values = data[data == np.inf].values.any()print(inf_values)# 使用均值填充 NaN 值data.fillna(data.mean(), inplace=True)# 在数据中估算 NaN 值填充data.interpolate(method='linear', inplace=True)

4、特征工程: 我们对日期特征进行了处理,计算了贷款发放月份与最早信用账户开设月份之间的差值,并对类别型特征进行了编码。

def data_feature(data):# 处理日期特征data['earliest_cr_line'] = pd.to_datetime(data['earliest_cr_line'])data['issue_d'] = pd.to_datetime(data['issue_d'])# 创建新特征:贷款发放月份与最早信用账户开设月份之间的差值data['credit_hist'] = (data['issue_d'] - data['earliest_cr_line']).dt.days# 删除日期特征data.drop(['earliest_cr_line', 'issue_d'], axis=1, inplace=True)# 对类别型特征进行编码cat_cols = data.select_dtypes(include=['object']).columnsle = LabelEncoder()for col in cat_cols:data[col] = le.fit_transform(data[col])return data

数据可视化与分析

在构建模型之前,我们对数据进行了可视化分析,以更好地理解数据的分布和特征之间的关系。

1、贷款金额的分布可视化: 我们绘制了贷款金额的直方图,以了解贷款金额的分布情况

def loan_amount(df):# 直方图plt.figure(figsize=(10, 6))sns.histplot(df['loan_amnt'], bins=30, kde=True, color='skyblue')plt.title('Loan Amount Distribution')plt.xlabel('Loan Amount')plt.ylabel('Frequency')plt.show()

在这里插入图片描述

2、贷款等级的分布可视化: 我们绘制了贷款等级的柱状图,以了解不同等级贷款的分布情况。

def grade_distribution(df):# 柱状图plt.figure(figsize=(10, 6))df['grade'].value_counts().plot(kind='bar', color='lightgreen')plt.title('Grade Distribution')plt.xlabel('Grade')plt.ylabel('Frequency')plt.show()

在这里插入图片描述

3、不同贷款状态下年收入的箱线图: 我们绘制了不同贷款状态下年收入的箱线图,以了解贷款状态与年收入之间的关系。

def loan_status(df):# 箱线图plt.figure(figsize=(10, 6))sns.boxplot(x='loan_status', y='annual_inc', data=df)plt.title('Annual Income Distribution by Loan Status')plt.xlabel('Loan Status')plt.ylabel('Annual Income')plt.show()

通过这些可视化分析,我们对数据的特征有了更深入的理解,为后续模型的构建提供了帮助。
在这里插入图片描述

使用热力图展示了不同特征之间的相关性强弱,相关性热力图可以帮助我们理解特征之间的线性相关性

def coolwarm(preprocessed_df):# 热力图plt.figure(figsize=(12, 8))corr = preprocessed_df.corr()sns.heatmap(corr, cmap='coolwarm', annot=False)plt.title('Correlation Heatmap')plt.show()

在这里插入图片描述

模型训练与评估

在数据预处理和分析之后,我们使用随机森林分类器对数据进行了训练,并评估了模型在测试集上的性能。

def model_train_main(data):# 划分特征和目标变量X = data.drop('loan_status', axis=1)y = data['loan_status']# 数据标准化scaler = StandardScaler()X_scaled = scaler.fit_transform(X)# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)# 模型训练rf_model = RandomForestClassifier(n_estimators=100, random_state=42)rf_model.fit(X_train, y_train)# 预测y_pred = rf_model.predict(X_test)# 评估模型accuracy = accuracy_score(y_test, y_pred)print("Accuracy:", accuracy)print("Classification Report:\n", classification_report(y_test, y_pred))

在这里插入图片描述

结论与展望

通过本文的介绍,我们完成了一个基于机器学习的信用评分模型的构建与分析过程。该模型可以作为金融机构评估借款人信用风险的重要工具,为贷款决策提供参考。未来,我们可以进一步优化模型,探索更多的特征工程方法和机器学习算法,以提高模型的准确性和稳健性。
如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于python,java,大数据,模型训练等。
在这里插入图片描述

这篇关于基于随机森林的信用卡满意度模型预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/864328

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费