Swin Transformer视觉大模型的原理详解(含代码)

2024-03-30 23:04

本文主要是介绍Swin Transformer视觉大模型的原理详解(含代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

SwinTransformer介绍

前言

是什么?

应用范围是什么?

到底解决了什么问题?

网络架构

Patch Embbeding介绍

window_partition介绍

W-MSA(Window Multi-head Self Attention)

Window_reverse

SW-MSA(Shifted Window Multi-head Self Attention)

模型参数

核心代码讲解

SwinTransformer技术详解

前言

  Transformer模型最开始是用于自然语言处理(NLP)领域的,NLP主要处理的是文本、句子、段落等,即序列数据。但是视觉领域处理的是图像数据,因此将Transformer模型应用到图像数据上面临着诸多挑战,理由如下:

  1. 与单词、句子、段落等文本数据不同,图像中包含更多的信息,并且是以像素值的形式呈现。
  2. 如果按照处理文本的方式来处理图像,即逐像素处理的话,即使是目前的硬件条件也很难。
  3. Transformer缺少CNNs的归纳偏差,比如平移不变性和局部受限感受野。
  4. CNNs是通过相似的卷积操作来提取特征,随着模型层数的加深,感受野也会逐步增加。但是由于Transformer的本质,其在计算量上会比CNNs更大。
  5. Transformer无法直接用于处理基于网格的数据,比如图像数据。

    为了解决上述问题,Google的研究团队提出了ViT模型。ViT是谷歌提出的把Transformer应用到图像分类的模型,虽然不是第一篇将transformer应用在视觉任务的论文,但是因为其模型“简单”且效果好,可扩展性强(模型越大效果越好),成为了transformer在CV领域应用的里程碑著作。

    ViT原论文中最核心的结论是,当拥有足够多的数据进行预训练的时候,ViT的表现就会超过CNN,突破transformer缺少归纳偏置的限制,可以在下游任务中获得较好的迁移效果。但是当训练数据集不够大的时候,ViT的表现通常比同等大小的ResNets要差一些,因为Transformer和CNN相比缺少归纳偏置(inductive bias),即一种先验知识,提前做好的假设。CNN具有两种归纳偏置一种是局部性,即图片上相邻区域具有相似的特征,一种是平移不变性,CNN具有上面两种归纳偏置,就有了很多先验信息,需要相对少的数据就可以学习到一个比较好的模型

下面来看下ViT是如何做?

ViT的工作流程,如下:

  • 将一张图片分成patches
  • 将patches铺平
  • 将铺平后的patches的线性映射到更低维的空间
  • 添加位置embedding编码信息
  • 将图像序列数据送入标准Transformer encoder中去
  • 在较大的数据集上预训练
  • 在下游数据集上微调用于图像分类

Swin Transformer是2021年微软研究院发表在ICCV上的一篇best paper。该论文已在多项视觉任务中霸榜(分类、检测、分割)。

《Swin Transformer: Hierarchical Vision Transformer using Shifted Windows》
论文地址:https://arxiv.org/pdf/2103.14030.pdf

先了解一下,VIT模型和Swin Transformer模型的区别:

1. 图像分块方式不同

VIT模型将图像分成固定大小的小块,每个小块都被视为一个“图像片段”,并通过Transformer编码器进行处理。而Swin Transformer模型采用了一种新的分块方式,称为“局部窗口注意力”,它将图像分成一系列大小相同的局部块

2. Transformer编码器的层数不同

VIT模型中使用的Transformer编码器层数较少,通常只有12层。而Swin Transformer模型中使用了更多的Transformer编码器层,通常为24层或48层。

3. 模型的参数量不同

由于Swin Transformer模型采用了更多的Transformer编码器层,因此其参数量比VIT模型更大。例如,Swin Transformer模型中的最大模型参数量可以达到1.5亿,而VIT模型中的最大模型参数量只有1.2亿。

4. 模型的性能不同

在ImageNet数据集上进行的实验表明,Swin Transformer模型的性能优于VIT模型。例如,在ImageNet-1K上,Swin Transformer模型的Top-1准确率为87.4%,而VIT模型的Top-1准确率为85.8%。

是什么?

Swin Transformer是一种为视觉领域设计的分层Transformer结构。它的两大特性是滑动窗口和分层表示。滑动窗口在局部不重叠的窗口中计算自注意力,并允许跨窗口连接。分层结构允许模型适配不同尺度的图片,并且计算复杂度与图像大小呈线性关系。Swin Transformer借鉴了CNN的分层结构,不仅能够做分类,还能够和CNN一样扩展到下游任务,用于计算机视觉任务的通用主干网络,可以用于图像分类、图像分割、目标检测等一系列视觉下游任务。

应用范围是什么?

Swin-Transformer是一种通过不重叠的和重叠的滑窗操作实现在一个窗口中注意力机制计算的Transformer模型。它作为计算机视觉的通用骨干网络Backbone在物体分类、目标检测、语义和实例分割和目标跟踪等任务中取得很好的性能和效果,所以Swin-Transformer大有取代CNN的趋势。不仅源码公开了,预训练模型也公开了,预训练模型提供大中小三个版本。

Swin-Transformer以及swin-transformer-ocr的工程源码地址分别为https://github.com/microsoft/Swin-Transformer.git,https://github.com/YongWookHa/swin-transformer-ocr.git。

到底解决了什么问题?

1. 超高分辨率的图像所带来的计算量问题,怎么办?

答:参考卷积网络的工作方式,获得全局注意力能力的同时,又将计算量从图像大小的平方关系降为线性关系,大大地减少了运算量,串联窗口自注意力运算(W-MSA)以及滑动窗口自注意力运算(SW-MSA)。

2. 最初的Vision Transformer是不具备多尺度预测,怎么办?

答:通过特征融合的方式PatchMerging(可参考卷积网络里的池化操作),每次特征抽取之后都进行一次下采样,增加了下一次窗口注意力运算在原始图像上的感受野,从而对输入图像进行了多尺度的特征提取。

3. 核心技术是什么?

SwinTransformer 针对ViT使用了“窗口”和“分层”的方式来替代长序列进行改进。

网络架构

  1. 输入:首先输入还是一张图像数据,224(宽) ∗ 224(高) ∗ 3(通道) 
  2. 处理过程:通过卷积得到多个特征图,把特征图分成每个Patch,堆叠Swin Transformer Block,与Swin TransformerBlock在每次堆叠后长宽减半,特征图个数翻倍。
  3. Block含义最核心的部分是对Attention的计算方法做出了改进,每个Block包括了一个W-MSA和一个SW-MSA,成对组合才能串联成一个Block。W-MSA是基于窗口的注意力计算。SW-MSA是窗口滑动后重新计算注意力。
Patch Embbeding介绍
  1. 输入:图像数据(224,224,3)
  2. 输出:(3136,96)相当于序列长度是3136个,每个的向量是96维特征
  3. 处理过程:通过卷积得到,Conv2d(3, 96, kernel_size=(4, 4), stride=(4, 4)),3136也就是 (224/4) * (224/4)得到的,也可以根据需求更改卷积参数
  4. 实际上就是一个下采样的操作,是不同于池化,这个相当于间接的对H和W维度进行间隔采样后拼接在一起,得到H/2,W/2,C*4。
window_partition介绍
  1. 输入:特征图(56,56,96)
  2. 默认窗口大小为7,所以总共可以分成8*8个窗口
  3. 输出:特征图(64,7,7,96)
  4. 处理过程:之前的单位是序列,现在的单位是窗口(共64个窗口),56=224/4,5656分成每个都是7*7大小的窗口,一共可以的得到8*8的窗口,因此输出为(64,7,7,96),因此输入变成了64个窗口不再是序列了。
W-MSAWindow Multi-head Self Attention
  1. 对得到的窗口,计算各个窗口自己的自注意力得分。
  2. qkv三个矩阵放在一起了:(3,64,3,49,32),3个矩阵,64个窗口,heads为3,窗口大小7*7=49,每个head特征96/3=32。
  3. attention结果为:(64,3,49,49) 每个头都会得出每个窗口内的自注意力
  4. 原来有64个窗口,每个窗口都是7*7的大小,对每个窗口都进行Self Attention的计算(3,64,3,49,32),第一个3表示的是QKV这3个,64代表64个窗口,第二个3表示的是多头注意力的头数,49就是77的大小,每头注意力机制对应32维的向量。
  5. attention权重矩阵维度(64,3,49,49),64表示64个窗口,3还是表示的是多头注意力的头数,49*49表示每一个窗口的49个特征之间的关系
Window_reverse
  1. 通过得到的attention计算得到新的特征(64,49,96),总共64个窗口,每个窗口7*7的大小,每个点对应96维向量。
  2. window_reverse就是通过reshape操作还原回去(56,56,96),还原的目的是为了循环,得到了跟输入特征图一样的大小,但是其已经计算过了attention,attention权重与(3,64,3,49,32)乘积结果为(64,49,96),这是新的特征的维度,96还是表示每个向量的维度,这个时候的特征已经经过重构,96表示了在一个窗口的每个像素与每个像素之间的关系。
SW-MSAShifted Window Multi-head Self Attention

原因分析:为什么要shift?原来的window都是算自己内部的,这样就会导致只有内部计算,没有它们之间的关系,容易上模型局限在自己的小领地,可以通过shift操作来改善

通过W-MSA我们得到的是每个窗口内的特征,还没有每个窗口与窗口之间的特征,SW-MSA就是用来得到每个窗口与窗口之间的特征。窗口与窗口之间的特征,是用一种滑动shift 的方式计算。

处理过程:实际上SW-MSA的偏移就是窗口在水平和垂直方向上分别偏移一定数量的像素,不管是SW-MSA还是W-MSA,实际上都是在做self-Attention的计算,只不过W-MSA是只对一个窗口内部做self-Attention的计算,SW-MSA是使用了一种偏移的方式,但是还是对一个窗口内部做self-Attention的计算。

假设这是原始特征图:

+---+---+---+---+

| A | B | C | D |

| E | F | G | H |

| I | J | K  |  L  |

| M | N | O | P |

+---+---+---+---+

偏移后的特征图:

+---+---+---+---+

| 0 | 0 | 0 | 0  |

| 0 | A | B | C |

| 0 | E | F | G |

| 0 | I  | J | K  |

+---+---+---+---+

原本多出来的地方,可以用0填充也可以用偏移后没有用到地方填充:

+---+---+---+---+

| M | N | O | P |

| D | A | B | C |

| H | E | F | G |

| L  | I  | J | K  |

+---+---+---+---+

实际上就是像素点发生了挪动

如图所示,红色线是窗口的分割,灰色是patch的分割,W-MSA将相邻的patch进行拼凑成窗口,但是这就导致了,窗口之间没有办法连接,SW-MSA的偏移计算会重新划分窗口,但是窗口不可以重叠的情况下,窗口由4个变成了9个。窗口的数量和大小都发生了变化,如图所示原文给出了一个办法,将窗口的大小做出了限制。

论文中使用了pad和mask的方法解决了这一问题,如上图中cyclic shift部分,对边缘部分尺寸较小的windows进行了填充(图中蓝色、绿色和黄色部分),使得每个windows都能够保持原来的大小,并且论文还采用了mask的方法来使得模型只在除了pad的部分做self-attention计算,这样一来就能够解决上面所提到的问题。

如图所示,4自始至终都没有改变,原来在W-MSA使用self-Attention进行计算,在SW-MSA还是使用self-Attention进行计算,但是比如1和7发生了变化,7和1的计算,假如了mask和padding的一些处理。一开始是4个窗口,经过偏移后变成了9个,但是计算不方便,还是按照4个窗口进行计算,多出来的值mask掉就行了。

所以一个Swin Transformer Block就是先后经过W-MSA和SW-MSA,而Swin Transformer主要就是Swin Transformer Block的堆叠。

模型参数

以下展示了Swin Transformer的模型参数,分为四中不同规模:Tiny、Small、Base、Larger。如Swin-T:concat为Patch Partition和Patch Merging操作,4×4表明高和宽变为原来的1/4,96-d表示输出通道为96维。下面×2表示堆叠两个Swin Transformer Block,窗口大小维7×7,输出通道维度为96,多头注意力机制的头数为3,其他的都类似。需要注意的是,在堆叠Swin Transformer Block时,含SW-MSA的块和含W-MSA的块是成对进行的,因此每一个stage的堆叠数都是偶数。(即就是第一块是W-MSA的Block时,则下一个块必须为SW-MSA)

核心代码讲解

 1. Patch Partition代码模块

class PatchEmbed(nn.Module):"""2D Image to Patch Embeddingsplit image into non-overlapping patches   即将图片划分成一个个没有重叠的patch"""def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):super().__init__()patch_size = (patch_size, patch_size)self.patch_size = patch_sizeself.in_chans = in_cself.embed_dim = embed_dimself.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):_, _, H, W = x.shape# padding# 如果输入图片的H,W不是patch_size的整数倍,需要进行paddingpad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)if pad_input:# to pad the last 3 dimensions,# (W_left, W_right, H_top,H_bottom, C_front, C_back)x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],   # 表示宽度方向右侧填充数0, self.patch_size[0] - H % self.patch_size[0],   # 表示高度方向底部填充数0, 0))# 下采样patch_size倍x = self.proj(x)_, _, H, W = x.shape# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = x.flatten(2).transpose(1, 2)x = self.norm(x)return x, H, W

2. Patch Merging代码模块

class PatchMerging(nn.Module):r""" Patch Merging Layer.步长为2,间隔采样Args:dim (int): Number of input channels.norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self, dim, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)self.norm = norm_layer(4 * dim)def forward(self, x, H, W):"""x: B, H*W, C    即输入x的通道排列顺序"""B, L, C = x.shapeassert L == H * W, "input feature has wrong size"x = x.view(B, H, W, C)# padding# 如果输入feature map的H,W不是2的整数倍,需要进行paddingpad_input = (H % 2 == 1) or (W % 2 == 1)if pad_input:# to pad the last 3 dimensions, starting from the last dimension and moving forward.# (C_front, C_back, W_left, W_right, H_top, H_bottom)# 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))# 以2为间隔进行采样x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]x = torch.cat([x0, x1, x2, x3], -1)  #  ————————>  [B, H/2, W/2, 4*C]   在channael维度上进行拼接x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]x = self.norm(x)x = self.reduction(x)  # [B, H/2*W/2, 2*C]return xdef create_mask(self, x, H, W):# calculate attention mask for SW-MSA# 保证Hp和Wp是window_size的整数倍Hp = int(np.ceil(H / self.window_size)) * self.window_sizeWp = int(np.ceil(W / self.window_size)) * self.window_size# 拥有和feature map一样的通道排列顺序,方便后续window_partitionimg_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]h_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1# 将img_mask划分成一个一个窗口mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制# [nW, Mh*Mw, Mh*Mw]# 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0return attn_mask

3. mask掩码生成和stage堆叠的代码模块

  def create_mask(self, x, H, W):# calculate attention mask for SW-MSA# 保证Hp和Wp是window_size的整数倍Hp = int(np.ceil(H / self.window_size)) * self.window_sizeWp = int(np.ceil(W / self.window_size)) * self.window_size# 拥有和feature map一样的通道排列顺序,方便后续window_partitionimg_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]h_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1# 将img_mask划分成一个一个窗口mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制# [nW, Mh*Mw, Mh*Mw]# 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0return attn_mask4.stage堆叠部分代码:class BasicLayer(nn.Module):"""A basic Swin Transformer layer for one stage.Args:dim (int): Number of input channels.depth (int): Number of blocks.num_heads (int): Number of attention heads.window_size (int): Local window size.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Truedrop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNormdownsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: Noneuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False."""def __init__(self, dim, depth, num_heads, window_size,mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):super().__init__()self.dim = dimself.depth = depthself.window_size = window_sizeself.use_checkpoint = use_checkpointself.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整# build blocksself.blocks = nn.ModuleList([SwinTransformerBlock(dim=dim,num_heads=num_heads,window_size=window_size,shift_size=0 if (i % 2 == 0) else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSAmlp_ratio=mlp_ratio,qkv_bias=qkv_bias,drop=drop,attn_drop=attn_drop,drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,norm_layer=norm_layer)for i in range(depth)])# patch merging layer    即:PatchMerging类if downsample is not None:self.downsample = downsample(dim=dim, norm_layer=norm_layer)else:self.downsample = Nonedef create_mask(self, x, H, W):# calculate attention mask for SW-MSA# 保证Hp和Wp是window_size的整数倍Hp = int(np.ceil(H / self.window_size)) * self.window_sizeWp = int(np.ceil(W / self.window_size)) * self.window_size# 拥有和feature map一样的通道排列顺序,方便后续window_partitionimg_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]h_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1# 将img_mask划分成一个一个窗口mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制# [nW, Mh*Mw, Mh*Mw]# 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0return attn_maskdef forward(self, x, H, W):attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版for blk in self.blocks:blk.H, blk.W = H, Wif not torch.jit.is_scripting() and self.use_checkpoint:x = checkpoint.checkpoint(blk, x, attn_mask)else:x = blk(x, attn_mask)if self.downsample is not None:x = self.downsample(x, H, W)H, W = (H + 1) // 2, (W + 1) // 2return x, H, W5.SW-MSA或者W-MSA模块代码:
class SwinTransformerBlock(nn.Module):r""" Swin Transformer Block.Args:dim (int): Number of input channels.num_heads (int): Number of attention heads.window_size (int): Window size.shift_size (int): Shift size for SW-MSA.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Truedrop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float, optional): Stochastic depth rate. Default: 0.0act_layer (nn.Module, optional): Activation layer. Default: nn.GELUnorm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self, dim, num_heads, window_size=7, shift_size=0,mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.num_heads = num_headsself.window_size = window_sizeself.shift_size = shift_sizeself.mlp_ratio = mlp_ratioassert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"self.norm1 = norm_layer(dim)    # 先经过层归一化处理# WindowAttention即为:SW-MSA或者W-MSA模块self.attn = WindowAttention(dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,attn_drop=attn_drop, proj_drop=drop)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)def forward(self, x, attn_mask):H, W = self.H, self.WB, L, C = x.shapeassert L == H * W, "input feature has wrong size"shortcut = xx = self.norm1(x)x = x.view(B, H, W, C)# pad feature maps to multiples of window size# 把feature map给pad到window size的整数倍pad_l = pad_t = 0pad_r = (self.window_size - W % self.window_size) % self.window_sizepad_b = (self.window_size - H % self.window_size) % self.window_sizex = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))_, Hp, Wp, _ = x.shape# cyclic shift# 判断是进行SW-MSA或者是W-MSA模块if self.shift_size > 0:# https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))    #进行数据移动操作else:shifted_x = xattn_mask = None# partition windows# 将窗口按照window_size的大小进行划分,得到一个个窗口x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]# 将数据进行展平操作x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]# W-MSA/SW-MSA"""# 进行多头自注意力机制操作"""attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]# merge windowsattn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]# 将多窗口拼接回大的featureMapshifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]# reverse cyclic shift# 将移位的数据进行还原if self.shift_size > 0:x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))else:x = shifted_x# 如果进行了padding操作,需要移出掉相应的padif pad_r > 0 or pad_b > 0:# 把前面pad的数据移除掉x = x[:, :H, :W, :].contiguous()x = x.view(B, H * W, C)# FFNx = shortcut + self.drop_path(x)x = x + self.drop_path(self.mlp(self.norm2(x)))return x

4. SW-MSA或者W-MSA模块代码

class SwinTransformerBlock(nn.Module):r""" Swin Transformer Block.Args:dim (int): Number of input channels.num_heads (int): Number of attention heads.window_size (int): Window size.shift_size (int): Shift size for SW-MSA.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Truedrop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float, optional): Stochastic depth rate. Default: 0.0act_layer (nn.Module, optional): Activation layer. Default: nn.GELUnorm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self, dim, num_heads, window_size=7, shift_size=0,mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.num_heads = num_headsself.window_size = window_sizeself.shift_size = shift_sizeself.mlp_ratio = mlp_ratioassert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"self.norm1 = norm_layer(dim)    # 先经过层归一化处理# WindowAttention即为:SW-MSA或者W-MSA模块self.attn = WindowAttention(dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,attn_drop=attn_drop, proj_drop=drop)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)def forward(self, x, attn_mask):H, W = self.H, self.WB, L, C = x.shapeassert L == H * W, "input feature has wrong size"shortcut = xx = self.norm1(x)x = x.view(B, H, W, C)# pad feature maps to multiples of window size# 把feature map给pad到window size的整数倍pad_l = pad_t = 0pad_r = (self.window_size - W % self.window_size) % self.window_sizepad_b = (self.window_size - H % self.window_size) % self.window_sizex = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))_, Hp, Wp, _ = x.shape# cyclic shift# 判断是进行SW-MSA或者是W-MSA模块if self.shift_size > 0:# https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))    #进行数据移动操作else:shifted_x = xattn_mask = None# partition windows# 将窗口按照window_size的大小进行划分,得到一个个窗口x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]# 将数据进行展平操作x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]# W-MSA/SW-MSA"""# 进行多头自注意力机制操作"""attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]# merge windowsattn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]# 将多窗口拼接回大的featureMapshifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]# reverse cyclic shift# 将移位的数据进行还原if self.shift_size > 0:x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))else:x = shifted_x# 如果进行了padding操作,需要移出掉相应的padif pad_r > 0 or pad_b > 0:# 把前面pad的数据移除掉x = x[:, :H, :W, :].contiguous()x = x.view(B, H * W, C)# FFNx = shortcut + self.drop_path(x)x = x + self.drop_path(self.mlp(self.norm2(x)))return x

5. 整体流程代码实现 

""" Swin Transformer
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`- https://arxiv.org/pdf/2103.14030Code/weights from https://github.com/microsoft/Swin-Transformer"""import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import numpy as np
from typing import Optionaldef drop_path_f(x, drop_prob: float = 0., training: bool = False):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted forchanging the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use'survival rate' as the argument."""if drop_prob == 0. or not training:return xkeep_prob = 1 - drop_probshape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNetsrandom_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_()  # binarizeoutput = x.div(keep_prob) * random_tensorreturn outputclass DropPath(nn.Module):"""Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""def __init__(self, drop_prob=None):super(DropPath, self).__init__()self.drop_prob = drop_probdef forward(self, x):return drop_path_f(x, self.drop_prob, self.training)"""将窗口按照window_size的大小进行划分,得到一个个窗口
"""
def window_partition(x, window_size: int):"""将feature map按照window_size划分成一个个没有重叠的windowArgs:x: (B, H, W, C)window_size (int): window size(M)Returns:windows: (num_windows*B, window_size, window_size, C)"""B, H, W, C = x.shapex = x.view(B, H // window_size, window_size, W // window_size, window_size, C)# permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]# view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)   # 输出的是按照指定的window_size划分成一个一个窗口的数据return windowsdef window_reverse(windows, window_size: int, H: int, W: int):"""将一个个window还原成一个feature mapArgs:windows: (num_windows*B, window_size, window_size, C)window_size (int): Window size(M)H (int): Height of imageW (int): Width of imageReturns:x: (B, H, W, C)"""B = int(windows.shape[0] / (H * W / window_size / window_size))# view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C]x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)# permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]# view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)return xclass PatchEmbed(nn.Module):"""2D Image to Patch Embeddingsplit image into non-overlapping patches   即将图片划分成一个个没有重叠的patch"""def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):super().__init__()patch_size = (patch_size, patch_size)self.patch_size = patch_sizeself.in_chans = in_cself.embed_dim = embed_dimself.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):_, _, H, W = x.shape# padding# 如果输入图片的H,W不是patch_size的整数倍,需要进行paddingpad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)if pad_input:# to pad the last 3 dimensions,# (W_left, W_right, H_top,H_bottom, C_front, C_back)x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],   # 表示宽度方向右侧填充数0, self.patch_size[0] - H % self.patch_size[0],   # 表示高度方向底部填充数0, 0))# 下采样patch_size倍x = self.proj(x)_, _, H, W = x.shape# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = x.flatten(2).transpose(1, 2)x = self.norm(x)return x, H, Wclass PatchMerging(nn.Module):r""" Patch Merging Layer.步长为2,间隔采样Args:dim (int): Number of input channels.norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self, dim, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)self.norm = norm_layer(4 * dim)def forward(self, x, H, W):"""x: B, H*W, C    即输入x的通道排列顺序"""B, L, C = x.shapeassert L == H * W, "input feature has wrong size"x = x.view(B, H, W, C)# padding# 如果输入feature map的H,W不是2的整数倍,需要进行paddingpad_input = (H % 2 == 1) or (W % 2 == 1)if pad_input:# to pad the last 3 dimensions, starting from the last dimension and moving forward.# (C_front, C_back, W_left, W_right, H_top, H_bottom)# 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))# 以2为间隔进行采样x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]x = torch.cat([x0, x1, x2, x3], -1)  #  ————————>  [B, H/2, W/2, 4*C]   在channael维度上进行拼接x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]x = self.norm(x)x = self.reduction(x)  # [B, H/2*W/2, 2*C]return x"""
MLP模块
"""
class Mlp(nn.Module):""" MLP as used in Vision Transformer, MLP-Mixer and related networks"""def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.act = act_layer()self.drop1 = nn.Dropout(drop)self.fc2 = nn.Linear(hidden_features, out_features)self.drop2 = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)x = self.act(x)x = self.drop1(x)x = self.fc2(x)x = self.drop2(x)return x"""
WindowAttention即为:SW-MSA或者W-MSA模块
"""
class WindowAttention(nn.Module):r""" Window based multi-head self attention (W-MSA) module with relative position bias.It supports both of shifted and non-shifted window.Args:dim (int): Number of input channels.window_size (tuple[int]): The height and width of the window.num_heads (int): Number of attention heads.qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: Trueattn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0proj_drop (float, optional): Dropout ratio of output. Default: 0.0"""def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):super().__init__()self.dim = dimself.window_size = window_size  # [Mh, Mw]self.num_heads = num_headshead_dim = dim // num_headsself.scale = head_dim ** -0.5# define a parameter table of relative position bias# 创建偏置bias项矩阵self.relative_position_bias_table = nn.Parameter(torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # [2*Mh-1 * 2*Mw-1, nH]    其元素的个数===>>[(2*Mh-1) * (2*Mw-1)]# get pair-wise relative position index for each token inside the windowcoords_h = torch.arange(self.window_size[0])  # 如果此处的self.window_size[0]为2的话,则生成的coords_h为[0,1]coords_w = torch.arange(self.window_size[1])  # 同理得coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # [2, Mh, Mw]coords_flatten = torch.flatten(coords, 1)  # [2, Mh*Mw]# [2, Mh*Mw, 1] - [2, 1, Mh*Mw]relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # [2, Mh*Mw, Mh*Mw]relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # [Mh*Mw, Mh*Mw, 2]relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0  行标+(M-1)relative_coords[:, :, 1] += self.window_size[1] - 1     # 列表标+(M-1)relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1relative_position_index = relative_coords.sum(-1)  # [Mh*Mw, Mh*Mw]self.register_buffer("relative_position_index", relative_position_index)   # 将relative_position_index放入到模型的缓存当中self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)self.softmax = nn.Softmax(dim=-1)def forward(self, x, mask: Optional[torch.Tensor] = None):"""Args:x: input features with shape of (num_windows*B, Mh*Mw, C)mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None"""# [batch_size*num_windows, Mh*Mw, total_embed_dim]B_, N, C = x.shape# qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]# reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]# permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)# [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)# transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]# @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]q = q * self.scaleattn = (q @ k.transpose(-2, -1))# relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # [nH, Mh*Mw, Mh*Mw]attn = attn + relative_position_bias.unsqueeze(0)# 进行mask,相同区域使用0表示;不同区域使用-100表示if mask is not None:# mask: [nW, Mh*Mw, Mh*Mw]nW = mask.shape[0]  # num_windows# attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]# mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)attn = attn.view(-1, self.num_heads, N, N)attn = self.softmax(attn)else:attn = self.softmax(attn)attn = self.attn_drop(attn)# @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]# transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]# reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]x = (attn @ v).transpose(1, 2).reshape(B_, N, C)x = self.proj(x)x = self.proj_drop(x)return x"""SwinTransformerBlock
"""
class SwinTransformerBlock(nn.Module):r""" Swin Transformer Block.Args:dim (int): Number of input channels.num_heads (int): Number of attention heads.window_size (int): Window size.shift_size (int): Shift size for SW-MSA.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Truedrop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float, optional): Stochastic depth rate. Default: 0.0act_layer (nn.Module, optional): Activation layer. Default: nn.GELUnorm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self, dim, num_heads, window_size=7, shift_size=0,mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.num_heads = num_headsself.window_size = window_sizeself.shift_size = shift_sizeself.mlp_ratio = mlp_ratioassert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"self.norm1 = norm_layer(dim)    # 先经过层归一化处理# WindowAttention即为:SW-MSA或者W-MSA模块self.attn = WindowAttention(dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,attn_drop=attn_drop, proj_drop=drop)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)def forward(self, x, attn_mask):H, W = self.H, self.WB, L, C = x.shapeassert L == H * W, "input feature has wrong size"shortcut = xx = self.norm1(x)x = x.view(B, H, W, C)# pad feature maps to multiples of window size# 把feature map给pad到window size的整数倍pad_l = pad_t = 0pad_r = (self.window_size - W % self.window_size) % self.window_sizepad_b = (self.window_size - H % self.window_size) % self.window_sizex = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))_, Hp, Wp, _ = x.shape# cyclic shift# 判断是进行SW-MSA或者是W-MSA模块if self.shift_size > 0:# https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))    #进行数据移动操作else:shifted_x = xattn_mask = None# partition windows# 将窗口按照window_size的大小进行划分,得到一个个窗口x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]# 将数据进行展平操作x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]# W-MSA/SW-MSA"""# 进行多头自注意力机制操作"""attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]# merge windowsattn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]# 将多窗口拼接回大的featureMapshifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]# reverse cyclic shift# 将移位的数据进行还原if self.shift_size > 0:x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))else:x = shifted_x# 如果进行了padding操作,需要移出掉相应的padif pad_r > 0 or pad_b > 0:# 把前面pad的数据移除掉x = x[:, :H, :W, :].contiguous()x = x.view(B, H * W, C)# FFNx = shortcut + self.drop_path(x)x = x + self.drop_path(self.mlp(self.norm2(x)))return xclass BasicLayer(nn.Module):"""A basic Swin Transformer layer for one stage.Args:dim (int): Number of input channels.depth (int): Number of blocks.num_heads (int): Number of attention heads.window_size (int): Local window size.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Truedrop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNormdownsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: Noneuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False."""def __init__(self, dim, depth, num_heads, window_size,mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):super().__init__()self.dim = dimself.depth = depthself.window_size = window_sizeself.use_checkpoint = use_checkpointself.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整# build blocksself.blocks = nn.ModuleList([SwinTransformerBlock(dim=dim,num_heads=num_heads,window_size=window_size,shift_size=0 if (i % 2 == 0) else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSAmlp_ratio=mlp_ratio,qkv_bias=qkv_bias,drop=drop,attn_drop=attn_drop,drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,norm_layer=norm_layer)for i in range(depth)])# patch merging layer    即:PatchMerging类if downsample is not None:self.downsample = downsample(dim=dim, norm_layer=norm_layer)else:self.downsample = Nonedef create_mask(self, x, H, W):# calculate attention mask for SW-MSA# 保证Hp和Wp是window_size的整数倍Hp = int(np.ceil(H / self.window_size)) * self.window_sizeWp = int(np.ceil(W / self.window_size)) * self.window_size# 拥有和feature map一样的通道排列顺序,方便后续window_partitionimg_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]h_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1# 将img_mask划分成一个一个窗口mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制# [nW, Mh*Mw, Mh*Mw]# 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0return attn_maskdef forward(self, x, H, W):attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版for blk in self.blocks:blk.H, blk.W = H, Wif not torch.jit.is_scripting() and self.use_checkpoint:x = checkpoint.checkpoint(blk, x, attn_mask)else:x = blk(x, attn_mask)if self.downsample is not None:x = self.downsample(x, H, W)H, W = (H + 1) // 2, (W + 1) // 2return x, H, Wclass SwinTransformer(nn.Module):r""" Swin TransformerA PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -https://arxiv.org/pdf/2103.14030Args:patch_size (int | tuple(int)): Patch size. Default: 4   表示通过Patch Partition层后,下采样几倍in_chans (int): Number of input image channels. Default: 3num_classes (int): Number of classes for classification head. Default: 1000embed_dim (int): Patch embedding dimension. Default: 96depths (tuple(int)): Depth of each Swin Transformer layer.num_heads (tuple(int)): Number of attention heads in different layers.window_size (int): Window size. Default: 7mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truedrop_rate (float): Dropout rate. Default: 0attn_drop_rate (float): Attention dropout rate. Default: 0drop_path_rate (float): Stochastic depth rate. Default: 0.1norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.patch_norm (bool): If True, add normalization after patch embedding. Default: Trueuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False"""def __init__(self, patch_size=4,  # 表示通过Patch Partition层后,下采样几倍in_chans=3,           # 输入图像通道num_classes=1000,     # 类别数embed_dim=96,         # Patch partition层后的LinearEmbedding层映射后的维度,之后的几层都是该数的整数倍  分别是 C、2C、4C、8Cdepths=(2, 2, 6, 2),  # 表示每一个Stage模块内,Swin Transformer Block重复的次数num_heads=(3, 6, 12, 24),  # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数window_size=7,         # 表示W-MSA与SW-MSA所采用的window的大小mlp_ratio=4.,          # 表示MLP模块中,第一个全连接层增大的倍数qkv_bias=True,drop_rate=0.,          # 对应的PatchEmbed层后面的attn_drop_rate=0.,     # 对应于Multi-Head self-Attention模块中对应的dropRatedrop_path_rate=0.1,    # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_ratenorm_layer=nn.LayerNorm,patch_norm=True,use_checkpoint=False, **kwargs):super().__init__()self.num_classes = num_classesself.num_layers = len(depths)  # depths:表示重复的Swin Transoformer Block模块的次数  表示每一个Stage模块内,Swin Transformer Block重复的次数self.embed_dim = embed_dimself.patch_norm = patch_norm# stage4输出特征矩阵的channelsself.num_features = int(embed_dim * 2 ** (self.num_layers - 1))self.mlp_ratio = mlp_ratio# split image into non-overlapping patches   即将图片划分成一个个没有重叠的patchself.patch_embed = PatchEmbed(patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,norm_layer=norm_layer if self.patch_norm else None)self.pos_drop = nn.Dropout(p=drop_rate)   # PatchEmbed层后面的Dropout层# stochastic depthdpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule# build layersself.layers = nn.ModuleList()for i_layer in range(self.num_layers):# 注意这里构建的stage和论文图中有些差异# 这里的stage不包含该stage的patch_merging层,包含的是下个stage的layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),  # 传入特征矩阵的维度,即channel方向的深度depth=depths[i_layer],              # 表示当前stage中需要堆叠的多少Swin Transformer Blocknum_heads=num_heads[i_layer],       # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数window_size=window_size,            # 表示W-MSA与SW-MSA所采用的window的大小mlp_ratio=self.mlp_ratio,           # 表示MLP模块中,第一个全连接层增大的倍数qkv_bias=qkv_bias,drop=drop_rate,                     # 对应的PatchEmbed层后面的attn_drop=attn_drop_rate,           # 对应于Multi-Head self-Attention模块中对应的dropRatedrop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],     # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_ratenorm_layer=norm_layer,downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,   # 判断是否是第四个,因为第四个Stage是没有PatchMerging层的use_checkpoint=use_checkpoint)self.layers.append(layers)self.norm = norm_layer(self.num_features)self.avgpool = nn.AdaptiveAvgPool1d(1)   # 自适应的全局平均池化self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):nn.init.trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)def forward(self, x):# x: [B, L, C]x, H, W = self.patch_embed(x)  # 对图像下采样4倍x = self.pos_drop(x)# 依次传入各个stage中for layer in self.layers:x, H, W = layer(x, H, W)x = self.norm(x)  # [B, L, C]x = self.avgpool(x.transpose(1, 2))  # [B, C, 1]x = torch.flatten(x, 1)x = self.head(x)   # 经过全连接层,得到输出return xdef swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs):# trained ImageNet-1K# https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pthmodel = SwinTransformer(in_chans=3,patch_size=4,window_size=7,embed_dim=96,depths=(2, 2, 6, 2),num_heads=(3, 6, 12, 24),num_classes=num_classes,**kwargs)return modeldef swin_small_patch4_window7_224(num_classes: int = 1000, **kwargs):# trained ImageNet-1K# https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pthmodel = SwinTransformer(in_chans=3,patch_size=4,window_size=7,embed_dim=96,depths=(2, 2, 18, 2),num_heads=(3, 6, 12, 24),num_classes=num_classes,**kwargs)return modeldef swin_base_patch4_window7_224(num_classes: int = 1000, **kwargs):# trained ImageNet-1K# https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pthmodel = SwinTransformer(in_chans=3,patch_size=4,window_size=7,embed_dim=128,depths=(2, 2, 18, 2),num_heads=(4, 8, 16, 32),num_classes=num_classes,**kwargs)return modeldef swin_base_patch4_window12_384(num_classes: int = 1000, **kwargs):# trained ImageNet-1K# https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pthmodel = SwinTransformer(in_chans=3,patch_size=4,window_size=12,embed_dim=128,depths=(2, 2, 18, 2),num_heads=(4, 8, 16, 32),num_classes=num_classes,**kwargs)return modeldef swin_base_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):# trained ImageNet-22K# https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pthmodel = SwinTransformer(in_chans=3,patch_size=4,window_size=7,embed_dim=128,depths=(2, 2, 18, 2),num_heads=(4, 8, 16, 32),num_classes=num_classes,**kwargs)return modeldef swin_base_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):# trained ImageNet-22K# https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pthmodel = SwinTransformer(in_chans=3,patch_size=4,window_size=12,embed_dim=128,depths=(2, 2, 18, 2),num_heads=(4, 8, 16, 32),num_classes=num_classes,**kwargs)return modeldef swin_large_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):# trained ImageNet-22K# https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pthmodel = SwinTransformer(in_chans=3,patch_size=4,window_size=7,embed_dim=192,depths=(2, 2, 18, 2),num_heads=(6, 12, 24, 48),num_classes=num_classes,**kwargs)return modeldef swin_large_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):# trained ImageNet-22K# https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pthmodel = SwinTransformer(in_chans=3,patch_size=4,window_size=12,embed_dim=192,depths=(2, 2, 18, 2),num_heads=(6, 12, 24, 48),num_classes=num_classes,**kwargs)return model

这篇关于Swin Transformer视觉大模型的原理详解(含代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/862815

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I